Von Lichtkegeln

im Standardmodell der Kosmologie (ACDM-Modell)

Version Oktober 2025

Autor: Werner Lange, Altos/Paraguay, langealtos werner.lange.altos@gmail.com

Zusammenfassung

Lehrbücher oder wissenschaftliche Arbeiten behandeln Lichtkegel im Allgemeinen nur rudimentär und unter sehr spezifischen Voraussetzungen. Der hier vorliegende Artikel hingegen strebt eine vollständige Darstellung aller relevanten Aspekte an.

Dargestellt werden Lichtkegel im räumlich flachen Standard-Modell der Kosmologie (Λ CDM-Modell). Der Scheitelpunkt der Rückwärts-Lichtkegel (Vergangenheits-Lichtkegel) kann bei beliebigen Zeitpunkten der kosmologischen Zeit seit dem Urknall angesiedelt sein. Herausgearbeitet wird das Zusammenwirken dieser Lichtkegel (Vorwärts- und Rückwärts-Lichtkegel) mit Hubblesphäre, kosmologischem Ereignishorizont, Partikelhorizont und Beobachtbarem Universum sowie mit den Weltlinien von Galaxien. Unter anderen wird auch die Frage beantwortet, bei welchem Lichtkegel-Scheitel eine z.B. heute sichtbare Galaxie nach Verstreichen einer vorgegebenen kosmologischen Zeit dann wahrnehmbar ist und bei welcher Emissionszeit das dann sichtbare Licht übermittelt wurde. Und es wird detailliert herausgearbeitet, aus welchen ruhenden Objekten und beweglichen Partikeln das Beobachtbare Universum zu einem bestimmten Zeitpunkt nach dem Urknall aufgebaut ist und wie Objekte und Partikel an ihren jeweiligen Ort gelangen.

Änderungsverfolgung

Tinder dings veriorgung	
Version	Änderungen
22. Dezember 2022	Erste Version
11. März 2023	Generelle Überarbeitung
02. April 2023	Zeichnungen überarbeitet, insbesondere Achsenbeschriftungen
27. Mai 2023	Zusätzliche Bemerkungen zu den Beziehungen zum
	Partikelhorizont
09. Juli 2023	Zeichnung 6.2 ersetzt
05. Oktober 2025	Zwei Zahlen korrigiert (durch grünen Hintergrund markiert).
	Textumstellungen. Minimale Änderungen in Kap. 7.3.

<u>Schlüsselwörter:</u> Lichtkegel, ΛCDM, mitbewegte Distanz, Eigendistanz, Hubblesphäre, Ereignishorizont, Partikelhorizont, Beobachtbares Universum, Abbremsparameter, kosmologische Parameter, Weltlinie, Geodäte, Planck18

English translation of title and abstract for publication on viXra.

On light cones

in the Standard Model of Cosmology (Lambda-CDM Model)

Abstract

This paper strives for a complete analysis of all relevant aspects of light cones in the spatially flat standard model of cosmology (Lambda-CDM model). The apex of the past light cone may be located at any cosmological time since the Big Bang. The presentation expounds the interaction of these light cones (past and future light cones) with the Hubblesphere, cosmological event horizon, particle horizon and observable universe as well as with the world lines of galaxies. Alongside this, the study also answers the question at which light cone apex a galaxy visible today can be perceived after a given cosmological time has elapsed and at which emission time the then visible light was emitted. In addition, some drawings elucidate in detail from which resting objects and moving particles the observable universe is built up at a certain time after the Big Bang and how objects and particles get to their respective locations.

Change tracking

Change tracking	
Version	Changes
22 December 2022	First Version
11 March 2023	General Revision
02 April 2023	Drawings revised, especially axis labelling
27 May 2023	Additional remarks on the relationship to the particle horizon
09 July 2023	Figure 6.2 replaced
05 October 2025	Two numbers corrected (indicated by a green background). Text
	rearrangements. Minimal changes in section 7.3.

<u>Keywords:</u> light cone, ΛCDM, comoving distance, proper distance, Hubble sphere, event horizon, particle horizon, observable universe, deceleration parameter, cosmological parameters, worldline, geodesic, Planck18

Inha	altsverzeichnis	
1	Zusammenfassung	
2	Parametersatz	
3	Kosmologische Annahmen	
4	Zeit und Skalenfaktor	
5	Präferenzen bei der Auswahl kosmologischer Formeln	
6	Lichtausbreitung	
6.1	Voraussetzungen für alle weiteren Berechnungen	
6.2	Allgemeine Lichtausbreitungsformel	
6.3	Zusammenhänge zwischen Formeln für Partikelhorizont und Lichtkegel	
6.4	Gemeinsame Eigenschaften der Kugeloberflächen	
7	Definition von Rückwärts-Lichtkegel, Hubblesphäre und Horizonten	
7.1	Hubblesphäre und Galaxien	
7.2	Partikelhorizont und Beobachtbares Universum	
	7.2.1 Definition Partikelhorizont	
	7.2.2 Partikelhorizont HEUTE	
	7.2.3 Beobachtbares Universum	
	7.2.4 Hinweis auf eine alternative Definition des Partikelhorizonts	.16
7.3	Kosmologischer Ereignishorizont	.16
7.4	Lichtkegel	
8	Zusammenspiel von Rückwärts-Lichtkegeln, Hubblesphäre, Horizonten und Galaxien	
8.1	Hinweis auf Zeichnungen anderer Autoren	
8.2	Lichtkegel und Hubblesphäre	.18
	8.2.1 Lichtkegel und Hubblesphäre: Zeichnungen	.18
	8.2.2 Lichtkegel und Hubblesphäre: Tabellen	.21
	8.2.3 Expansion von Vielfachen der Hubblesphäre	.23
8.3	Zweiseitige und einseitige Zeichnungen	.24
8.4	Lichtkegel und Galaxien	
9	Rückwärts-Lichtkegel und Partikelhorizont	.29
9.1	Einige Zusatzbemerkungen zur Definition	.29
9.2	Lichtkegel, Weltlinien ruhender Objekte und Beobachtbares Universum	
9.3	Beobachtbares Universum und Lichtlaufzeit	
10	Vorwärts-Lichtkegel	
10.1	Vorwärts-Lichtkegel und Beobachtbares Universum CMB	.36
10.2	Alternative Definitionen von Partikelhorizont und Beobachtbarem Universum	.38
10.3	Interpretation des Partikelhorizonts als Lichtkegel	
10.4	6 6	
11	Verwendete Begriffe, Symbole und Abkürzungen	
12	Literatur	

1 Zusammenfassung

Lehrbücher oder wissenschaftliche Arbeiten behandeln Lichtkegel im Allgemeinen nur rudimentär und unter sehr spezifischen Voraussetzungen. Der hier vorliegende Artikel hingegen strebt eine vollständige Darstellung aller relevanten Aspekte an.

Dargestellt werden Lichtkegel im räumlich flachen Standard-Modell der Kosmologie (ACDM-Modell). Der Scheitelpunkt der Rückwärts-Teillichtkegel (Vergangenheits-Lichtkegel) kann bei beliebigen Zeitpunkten der kosmologischen Zeit seit dem Urknall angesiedelt sein. Herausgearbeitet wird das Zusammenwirken dieser Lichtkegel (Vorwärts- und Rückwärts-Lichtkegel) mit Hubblesphäre, kosmologischem Ereignishorizont, Partikelhorizont und Beobachtbarem Universum sowie mit den Weltlinien von Galaxien. Unter anderen wird auch die Frage beantwortet, bei welchem Lichtkegel-Scheitel eine z.B. heute sichtbare Galaxie nach Verstreichen einer vorgegebenen kosmologischen Zeit dann wahrnehmbar ist und bei welcher Emissionszeit das dann sichtbare Licht übermittelt wurde. Und es wird detailliert herausgearbeitet, aus welchen ruhenden Objekten und beweglichen Partikeln (im Allgemeinen Photonen) das Beobachtbare Universum zu einem bestimmten Zeitpunkt nach dem Urknall aufgebaut ist und wie Objekte und Partikel an ihren jeweiligen Ort gelangen.

Auch um mit der Terminologie von Veröffentlichungen zu Lichtkegeln im Minkowski-Raum der Speziellen Relativitätstheorie verträglich zu bleiben, wollen wir in diesem Artikel genau einen Beobachter annehmen, dessen heutiger Ort in der Milchstraße (z.B. auf der Erde) gelegen ist. Der Begriff "Beobachter" wird in diesem Artikel nicht anders verwendet werden. Anstelle von "fundamentalen Beobachtern" verwenden wir die Bezeichnung "ruhende Objekte" oder "mitbewegte Objekte", die zusammen mit dem Beobachter im Hubble-Flow treiben.

2 Parametersatz

Wir setzen für alle Berechnungen den Parametersatz Planck 18 (vgl. Planck 18 [1], Abstract) für das Λ CDM Modell voraus. t steht für die kosmologische Zeit seit dem Urknall, a für den Skalenfaktor.

Tabelle 1: Planck18 –Parametersatz für das ACDM-Modell

H_0	Hubble-Parameter heute	67.4 km/Mpc/s
$\Omega_{ m M}$	Materie-Anteil heute an der Materie/Energie-	0.315
	Dichte des Universums	
$\Omega_{ m R}$	Strahlungs-Anteil heute	0.9209605429E-04
Ω_{Λ}	Anteil dunkler Energie heute, $\Omega_{\Lambda} = 1 - \Omega_{M} - \Omega_{R}$	0.6849079039

 H_0 , und Ω_M wurden durch Planck18 vorgegeben.

Alle Berechnungen wurden mit dem Kosmologie-Rechner WELTTABELLEN [2] durchgeführt. WELTABELLEN hat über die Stefan-Boltzmann-Konstante zusätzlich den Strahlungsanteil Ω_R ermittelt.

Es lassen sich folgende Werte ableiten:

Tabelle 2: Berechnete Werte für t=HEUTE, a=1, Parametersatz = Planck18 [1]

Zeit seit dem Urknall	13.790687 Mrd. Jahre
Physikalische Entfernung des Beobachters zur Hubblesphäre	14.507303 Mrd. Lichtjahre
Physikal. Entfernung des Beobachters zum Ereignishorizont	16.679351 Mrd. Lichtjahre
Physikal. Entfernung des Beobachters zum Partikelhorizont	46.132820 Mrd. Lichtjahre

Tabelle 3: Weitere berechnete Werte, Parametersatz = Planck18

Übergang von verlangsamter zu beschleunigter Expansion	7.6931755 Mrd. Jahre nach
(Abbremsparameter $q=0$)	dem Urknall
	(a=0.61284999)
Entfernung des Beobachters zur Hubblesphäre (physikal.)	10.122295 Mrd. Lichtjahre
(mitbewegt)	16.516757 Mrd. Lichtjahre
Schnittpunkt des heutigen Lichtkegels mit der	4.0534118 Mrd. Jahre nach
Hubblesphäre (größte frühere physikalische Entfernung von	dem Urknall (a=0.38645306,
heute sichtbaren Photonen vom Beobachter)	z(HEUTE)= <mark>1.5876364</mark>)
Damalige Entfernung des Beobachters zur Hubblesphäre	5.8513981 Mrd. Lichtjahre
(physikal.)	
Zeitpunkt t _{CMB} der Emission CMB	371'127 Jahre nach dem
CMB Last Scattering "z*=1090" (vgl. Planck 18 [1], Table	Urknall
2, S. 16, dort keine weitere Erläuterung von "z*")	
Entfernung des Beobachters zur Oberfläche Last Scattering	41.447549 <u>Millionen</u>
t _{CMB} =371'127 Jahre nach dem Urknall (Oberfläche zum	Lichtjahre
Zeitpunkt der Emission)	
Entfernung des Beobachters zur Oberfläche Last Scattering	45.219275 Mrd. Lichtjahre
<u>bei t=HEUTE</u>	-

Die Vereinbarung a=1 für t=HEUTE ist in Kap. 4 erläutert. Wegen dieser Vereinbarung sind physikalische (Eigendistanz) und mitbewegte Entfernung für t=HEUTE identisch. Die Rolle des Beobachters ist in Kap. 3 erwähnt. Die (physikalische) Entfernung zu den Kugeloberflächen Hubblesphäre, Ereignishorizont und Partikelhorizont ist jeweils der Radius dieser Kugeloberflächen mit dem Beobachter im Zentrum.

3 Kosmologische Annahmen

Auf großen Skalen wird das seit dem Urknall expandierende Universum als isotrop und homogen angenommen. Der lediglich durch expansionsbedingte Abstandsänderungen charakterisierte Raum wird auch als Hubble-Flow bezeichnet. Die anwachsenden Abstände zwischen im Hubble-Flow treibenden, als ruhend angenommenen Objekten können durch einen Skalenfaktor a(t) beschrieben werden, der allein von der Zeit t seit dem Urknall abhängt. Im Sinne der Allgemeinen Relativitätstheorie wird die Zeit als Eigenzeit der im Hubble-Flow treibenden ruhenden Objekte (mit synchronisierten Uhren) verstanden.

Koordinatensysteme für die Raumzeit des Universums bestehen aus 3 Raumachsen und einer Zeitachse. Die Raumachsen kann man im Fall des räumlich flachen Λ CDM-Modells in natürlicher Form als gemäß a(t) expandierende euklidische Koordinatenachsen interpretieren, wobei ruhende Objekte der Expansion der Achsen folgen. Basis für die Entwicklung des durch die Koordinaten abgebildeten expandierenden Universums ist dabei die Friedmann-Gleichung, zeitlicher Verlauf und Abstände sind durch die Friedmann-Lemaître-Robertson-Walker-Metrik (FLRW-Metrik) umschrieben.

Anders als für die Zeitachse gibt es für die Raumachsen kein natürliches Maß. Entfernungen zwischen Objekten zu konstanter gemeinsamer Zeit existieren, sind jedoch nicht messbar. Vielmehr müssen diese Distanzen über die kosmologische Theorie erschlossen werden. Mitbewegte Koordinaten treiben mit dem Hubble-Flow. Die mitbewegte Distanz (englisch: comoving distance) zwischen Objekten, die ebenfalls im Hubble-Flow treiben, ändert sich trotz der Expansion des Universums nie. Im Gegensatz dazu spiegeln physikalische Koordinaten die mit der Expansion des Universums anwachsenden Entfernungen als Eigendistanz (englisch: proper distance) zwischen ruhenden Objekten wider. Aufgrund von Isotropie und Homogenität

des Universums kann der räumliche Ursprung des Koordinatensystems im Prinzip an einem beliebigen Ort des Universums angesetzt werden.

Der Beobachter selbst unterscheidet sich von einem ruhenden Objekt nur dadurch, dass er lediglich mit Lichtgeschwindigkeit übermittelte Informationen (i.a. Photonen) empfängt, während die mitbewegten Objekte (i.a. Galaxien) solche Informationen auch emittieren.

Genaugenommen gelten die Hubble-Gesetze, über die die Rezessionsgeschwindigkeiten von Objekten hergeleitet werden, nur für den Beobachter und die ruhenden Objekte.

In der Praxis betrachten wir jedoch im Allgemeinen die Abstände von Galaxien von diesem Beobachter sowie die Geodäten von auf den Beobachter gerichteten Photonen, die von diesen Galaxien emittiert werden.

Anders als die als ruhend angenommenen Objekte sind die Galaxien jedoch in gravitativ bedingte Bewegungen eingebunden. Diese Pekuliarbewegungen werden durch die hier zugrundeliegende Theorie nicht abgebildet. Je länger das Licht benötigt hat, den heutigen Ort der Milchstraße zu erreichen, desto geringer sind im Durchschnitt die durch Pekuliarbewegungen bedingten relativen Fehler. Einige Autoren verwenden hier den Begriff der "Hubble-Flow-Galaxie".

Der Beobachter, dessen heutiger Ort in der Milchstraße gelegen ist, wird heute, in der Vergangenheit und in der Zukunft im Ursprung des durch den Partikelhorizont begrenzten Beobachtbaren Universums angenommen. Wer mit der theoretischen Annahme keine Schwierigkeiten hat, dass für die Milchstraße keine gravitativ bedingten Pekuliarbewegungen stattgefunden haben, kann die Weltlinie des Beobachters unter dieser Annahme als Weltlinie der Milchstraße interpretieren. Da wir allerdings in diesem Artikel den Ort des Beobachters über sehr lange Zeiträume (z.B. mehrere 10 oder 100 Milliarden Jahre) betrachten wollen, ist die Gleichsetzung der Weltlinie des Beobachters mit der Weltlinie der Milchstraße nicht angemessen.

4 Zeit und Skalenfaktor

Der Skalenfaktor a für den Zeitpunkt t=HEUTE wird mit a=1 festgelegt. Die Festlegung a(HEUTE)=1 ist bedingt durch eine der möglichen Transformationen, die die FLRW-Metrik invariant lässt. Bei allen diesen Transformationen bleibt das Produkt aus Skalenfaktor und mitbewegter Entfernung stets gleich.

Zeit t und Skalenfaktor a sind globale Größen, die beide von NULL bis UNENDLICH bijektiv aufeinander abbildbar sind. Die Abbildungen sind in beide Richtungen streng monoton steigend. In vielen Berechnungen der Kosmologie wird von der zweimaligen stetigen Differenzierbarkeit der Funktion a(t) Gebrauch gemacht.

Die Zeit t ist aus dem Skalenfaktor a durch

$$t(a) = \int_0^a \frac{d\alpha}{\alpha H(\alpha)} \tag{1}$$

mit dem vom Skalenfaktor abhängigen Hubble-Parameter

$$H(a) = H_0 E(a) \tag{2}$$

und der Dichtefunktion

$$E(a) = (\Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_A)^{1/2}$$
(3)

numerisch relativ einfach berechenbar. Für H_0 , Ω_R , Ω_M und Ω_A siehe Tabelle 1.

Die Umkehrfunktion a(t) erfordert mehr Rechenaufwand. Z.B. ist a bei vorgegebenem t und variablem t^* als Nullstelle von t(a)- t^* herleitbar.

E(a) zeichnet die Entwicklung des Hubble-Parameters und auch aller späteren Integrale, in denen die Dichtefunktion auftritt, vom Skalenfaktor a und wegen der Bijjktivität der Abbildungen t(a) und a(t) auch von der Zeit t nach.

Es ist bekannt, dass das Integral (1) für die untere Integrationsgrenze existiert. Bei der numerischen Berechnung wird man so nahe an *NULL* herangehen, wie es die Genauigkeit der aktuell bearbeiteten Aufgabe erfordert.

Als Integrationsvariable im Integranden verwenden wir α anstelle von a (und später auch anstelle τ von t), um zwischen Integrationsvariable und Integrationsgrenzen klar zu unterscheiden.

5 Präferenzen bei der Auswahl kosmologischer Formeln

Aufgrund der einfacheren Berechenbarkeit verwenden wir im Weiteren und im Einklang mit dem Kosmologie-Rechner WELTTABELLEN [2] für Integrale vom Skalenfaktor a abhängige Formeln. Diese Festlegung schließt nicht aus, dass für andere, aber hier nicht explizit erwähnte Berechnungen die Funktion a(t) einmal oder zweimal nach t differenziert werden muss.

Ein besonderes Ziel dieses Artikels ist die Herausarbeitung der Eigenschaften von Lichtkegeln beliebiger Scheitelpunkte. Unter einem Scheitelpunkt oder Scheitel ist stets der Scheitelpunkt eines Rückwärts-Lichtkegels (Vergangenheits-Lichtkegels) gemeint. Die Rotverschiebung z=z(Scheitelzeit) ist damit eine vom Scheitel abhängige Größe. Die Scheitelabhängigkeit der Rotverschiebung legt nahe, Formeln für die Rotverschiebung bei der Darstellung dieses Themas nur in unverzichtbaren Fällen zu verwenden.

Wie bereits erwähnt, entspricht der Wert mitbewegter Koordinaten dem Wert der physikalischen Koordinaten bei a=1 (und nicht etwa beim Scheitel eines vom heutigen Lichtkegel verschiedenen Lichtkegels). Es wäre äußerst verwirrend, wenn man neben z auch noch a in Abhängigkeit von Lichtkegel-Scheitelpunkten variabel festlegen würde.

6 Lichtausbreitung

6.1 Voraussetzungen für alle weiteren Berechnungen

Bevor wir einige weitere Formeln erwähnen, wollen wir uns noch einmal unsere Voraussetzungen ins Gedächtnis rufen. Wir setzen das räumlich flache, ewig expandierende ACDM-Modell (also ohne Krümmungsparameter) des Universums mit dem Parametersatz Planck18 (vgl. Planck 18 [1], Abstract) voraus und betrachten einen im Hubble-Flow schwebenden Beobachter, dessen heutiger Ort in der Milchstraße (z.B. auf der Erde)

gelegen ist und der im räumlichen Ursprung eines Koordinatensystems angenommen wird. Zu einem beliebigen Zeitpunkt $T(0 < T < \infty)$ empfängt dieser Beobachter Licht, das von als ruhend angenommenen Galaxien oder anderen mitbewegten Objekten emittiert wurde. Zum Zeitpunkt HEUTE ist der Skalierungsparameter mit a=I festgelegt, was bedingt, dass die mitbewegte Entfernung dem Wert der physikalischen Entfernung (Eigendistanz) bei a=I (und für $t \neq HEUTE$ nicht der Entfernung am Scheitelpunkt des Lichtkegels) entspricht.

Genaugenommen brauchen wir die Emission von Photonen erst seit der Rekombinationsepoche zu betrachten. Bei Planck 18 (vgl. Planck 18 [1], Table 2, S. 16) wird die Emission der Strahlung des Mikrowellen-Hintergrundes bei z(HEUTE)=1090 angegeben, was einer Zeit von t=371'127 Millionen Jahren nach dem Urknall entspricht (siehe Tabelle 3).

Der exakte Ablauf der Emission der kosmologischen Mikrowellen-Hintergrund-Strahlung (Cosmic Microwave Background Radiation, kurz: CMB) ist nicht Thema dieses Artikels. Der CMB wird als ein zeitlich punktuelles Ereignis modelliert, das *371'127 Jahre* nach dem Urknall das gesamte Universum erfasst.

Horizonte und andere Konstrukte sind häufig Kugeloberflächen mit dem Beobachter im Zentrum. Sollen Abstände zwischen transversal gelegenen Objekten berechnet werden, so werden im Allgemeinen (räumliche) Polarkoordinaten (Kugelkoordinaten) für Abstandsmessungen herangezogen. Ist man jedoch an einem speziellen Objekt wie z.B. einer Galaxie, deren Abstandsänderungen zum Beobachter sowie an der Geodäte von auf den Beobachter gerichteten, von dieser Galaxie emittierten Photonen interessiert, so spricht nichts dagegen, das räumliche Koordinatensystem mit seinen drei Koordinatenachsen so zu positionieren, dass die Galaxie auf der positiven Halbachse jener Koordinatenachse gelegen ist, die man in der Mathematik üblicherweise als x-Achse bezeichnet. Diese Koordinatenachse kann dadurch gekennzeichnet werden, dass für auf der Achse gelegene Objekte die zweite und dritte Koordinate jeweils mit *NULL* besetzt sind. Ist die Galaxie auf einer Kugeloberfläche mit dem Beobachter im Zentrum gelegen, so ist die radiale erste Koordinate gleich dem Radius der Kugel und zugleich der (physikalische) Abstand der Galaxie zum Beobachter.

Da Kugelradius und radiale Koordinate übereinstimmen, wollen wir diese Koordinatenachse als <u>radiale Koordinatenachse</u> bezeichnen. Für Fragen der Kosmologie, bei denen wie im hier vorliegenden Artikel keine Raumwinkel beachtet werden müssen, kann man Berechnungen auf diese Achse beschränken und mit nur reellen Werten rechnen. Die Galaxie entfernt sich aufgrund der Expansion des Universums auf dieser Achse vom im Ursprung des räumlichen Koordinatensystems gelegenen Beobachter. Ein von dieser Galaxie emittiertes, auf den Beobachter gerichtetes Photon strebt auf dieser Achse auf den Beobachter zu und geht, sofern es diesen erreicht, anschließend auf den negativen Bereich der Achse über. Zeichnungen in diesem Artikel verwenden eine vertikale Zeitachse in Milliarden Jahren und die radiale Koordinatenachse als horizontale Achse in Milliarden Lichtjahren. Für Zeichnungen, die keine konkrete Galaxie abbilden, kann eine beliebige (durch den Koordinatenursprung verlaufende) Achse als radiale Koordinatenachse gewählt werden, deren Koordinaten stellvertretend für Kugeloberflächen um den Beobachter mit dem Radius der Koordinate stehen.

Im hier vorliegenden Artikel werden keine Polarkoordinaten benötigt. Möchte man eine gemeinsame radiale Achse bestimmen, die für alle Zeichnungen und alle Erläuterungen dieses Artikels Gültigkeit besitzen soll, so kann man den Pfad zur Galaxie SPT0418-47 (siehe Kap. 8.4) zur Wahl der geeigneten Koordinatenachse heranziehen.

6.2 Allgemeine Lichtausbreitungsformel

Mit c wird im Weiteren die Lichtgeschwindigkeit bezeichnet.

Anders als im Minkowski-Raum der Speziellen Relativitätstheorie muss bei der Lichtausbreitung im Λ CDM-Modell der Kosmologie noch die Expansion des Universums mitberücksichtigt werden.

Empfängt der Beobachter zu einem Zeitpunkt t_r Licht von einer Galaxie, das zu einem Zeitpunkt t_e (also $t_e \le t_r$) emittiert wurde, so beträgt der mitbewegte Abstand $D_C(t_e, t_r)$ des Beobachters im räumlichen Koordinatenursprung zu dieser Galaxie

$$D_C(t_e, t_r) = c \int_{t_e}^{t_r} \frac{d\tau}{a(\tau)} = c \int_{a(t_e)}^{a(t_r)} \frac{d\alpha}{\alpha^2 H(\alpha)}$$
(4)

Als Integrationsvariablen im Integranden verwenden wir wiederum α anstelle von a und zusätzlich τ anstelle von t, um zwischen Integrationsvariable und Integrationsgrenzen klar zu unterscheiden. Selbstverständlich gelten zwischen α und τ die gleichen Beziehungen wie zwischen a und t.

Es sei daran erinnert, dass der Skalenfaktor a für den Zeitpunkt t=HEUTE mit a=1 festgelegt ist. Der Wert des mitbewegten Abstands $D_C(t_e,t_r)$ ist eine von dieser globalen Festlegung betroffene Größe. Die Festlegung a(HEUTE)=1 wird durch eine der zulässigen Transformationen ermöglicht, die die FLRW-Metrik invariant lässt. Bei allen diesen Transformationen bleibt die physikalische Entfernung als Produkt aus Skalenfaktor und mitbewegter Entfernung stets gleich (siehe Kap. 4).

Unter Verwendung des Ausdrucks

$$d(a_1, a_2, a_3) = c \, a_3 \int_{a_1}^{a_2} \frac{d\alpha}{\alpha^2 \, H(\alpha)}$$
 (5)

ergeben sich für den Beobachter im Ursprung des räumlichen Koordinatensystems zum Zeitpunkt *t* für den mitbewegten bzw. physikalischen Abstand zu den Kugeloberflächen von Partikelhorizont, Ereignishorizont und Hubblesphäre die folgenden Formeln:

Tabelle 4: Formeln für Lichtkegel, Hubblesphäre und Horizonte

Entfernung	mitbewegt	physikalisch
Partikelhorizont	$D_{PH}(t)=d(0,a(t),1)$	$d_{PH}(t) = d(0, a(t), a(t))$
Partikelhorizont t _{min}	$D_{PHmin}(t) = d(a(t_{min}), a(t), 1)$	$d_{PHmin}(t) = d(a(t_{min}), a(t), a(t))$
Ereignishorizont	$D_{EH}(t)=d(a(t),\infty,1)$	$d_{EH}(t) = d(a(t), \infty, a(t))$
Hubblesphäre	$D_{HS}(t) = c / (a(t) H(a(t)))$	$d_{HS}(t)=c/H(a(t))$
Lichtkegel <i>LK(T)</i>	$D_{LK}(T,t)=d(a(t),a(T),1)$	$d_{LK}(T,t)=d(a(t),a(T),a(t))$

Der physikalische Abstand vom Beobachter ist der Radius der jeweiligen Kugeln.

 t_{min} stellt unter der Nebenbedingung $t_{min} < t$ einen Zeitpunkt im frühen Universum dar. Das am häufigsten verwendete Beispiel für t_{min} ist dabei der Zeitpunkt der Emission der Hintergrundstrahlung t_{CMB} , für den wir eigenständige Symbole bereitstellen.

Ergänzung Tabelle 4: Untere Grenze tcmB als Beispiel für den Partikelhorizont tmin

Entfernung	mitbewegt	physikalisch	
Partikelhori-	$D_{PHCMB}(t) = d(a(t_{CMB}), a(t), 1)$	$d_{PHCMB}(t) = d(a(t_{CMB}), a(t), a(t))$	(6)
zont CMB			

Die Formeln für den Lichtkegel LK(T) mit einem Scheitel beim Zeitpunkt T umschreiben in physikalischen Koordinaten den Abstand d(a(t),a(T),a(t)) des Beobachters zum Zeitpunkt t von einer Galaxie, von der der Beobachter zum Zeitpunkt T mit Lichtgeschwindigkeit übermittelte Informationen (im Allgemeinen Photonen) empfängt, die zum Zeitpunkt t emittiert wurden. Der zugehörige mitbewegte Abstand d(a(t),a(T),1) zeigt (aufgrund der Voraussetzung a(HEUTE)=1) den physikalischen Abstand der Galaxie vom Beobachter zum Zeitpunkt HEUTE an. Im Allgemeinen wird der Zeitpunkt t über die beobachtete Rotverschiebung z(t)=a(T)/a(t)-1 ermittelt -z(t) und a(T) sind bekannt, über das berechnete a(t) wird t via (1) bereitgestellt.

Das Raumzeit-Konstrukt des Lichtkegels LK(T) ist in Kap. 7.4 genauer erläutert. Für jeden Zeitpunkt t < T sind alle emittierenden Objekte auf einer von T und t abhängigen Kugeloberfläche um den Beobachter gelegen. Jeder Lichtkegel LK(T) als Ganzes umschreibt eine von t abhängige Sequenz von Kugeloberflächen.

Wird ein Lichtkegel LK(T) in seiner Raumzeitstruktur als Ganzes betrachtet, so wird dieser im Weiteren durch seinen Scheitel T in Mrd. Jahren seit dem Urknall identifiziert. LK(28) ist der Lichtkegel, dessen Rückwärts-Lichtkegel einen Scheitel 28 Mrd. Jahre nach dem Urknall aufweist. LK(HEUTE) kennzeichnet den Lichtkegel mit HEUTIGEM Scheitel (13.790687 Mrd. Jahre nach dem Urknall, siehe Tabelle 2). Insbesondere in Zeichnungen wird von dieser Nomenklatur Gebrauch gemacht. Wie in Tabelle 4 dargelegt, wird der mitbewegte Abstand des Lichtkegels LK(T) vom Beobachter zum Zeitpunkt t in Mrd. Lichtjahren in der Form $D_{LK}(T,t)$ und der entsprechende physikalische Abstand in der Form $d_{LK}(T,t)$ geschrieben.

Es ist bekannt, dass alle Integrale für endliches t existieren, jedoch in physikalischen Koordinaten gegen UNENDLICH verlaufen können, wenn t gegen UNENDLICH strebt.

Die Voraussetzung t < T für Lichtkegel haben wir bisher verwendet, um den Standardfall eines Photonen emittierenden Objekts und eines Photonen empfangenden Beobachters genauer darzulegen. Für die Formeln von Tabelle 4 ist diese Voraussetzung jedoch nicht zwingend erforderlich. Passieren die empfangenen Photonen den Beobachter, wechseln die Koordinaten des Lichtkegels von der positiven radialen Achse zur negativen. Die Formeln können auch für den Vorwärts-Lichtkegel verwendet werden. Dieser wird ab Kap. 10 genauer untersucht.

Tabelle 5: t=0 und t=∞ für Lichtkegel, Hubblesphäre und Horizonte für Parametersatz Planck18 (siehe Tabelle 1)

Entfernung in Mrd. Lichtjahren	mitbewegt t=0	physika- lisch t=0	mitbewegt t=∞	physikalisch t=∞
Partikelhorizont	0	0	62.812172	∞
Ereignishorizont	62.812172	0	0	17.529543 *1)
Hubblesphäre	0	0	0	17.529543 *1)
Lichtkegel festes T	$D_{PH}(T)$	0	-D _{EH} (T)	-∞

^{*1)} c / (H_0 * $\Omega_{\Lambda}^{1/2}$) in Mrd. Lichtjahren.

6.3 Zusammenhänge zwischen Formeln für Partikelhorizont und Lichtkegel

In unserer Nomenklatur haben wir den Partikelhorizont t_{min} von einem Parameter t und einem Bezugszeitpunkt t_{min} abhängig gemacht, den Lichtkegel von einem Scheitelpunkt T und einem Parameter t. Sollen beide Konstrukte verglichen werden, muss von dieser Nomenklatur abgewichen werden.

Standardfall: Lichtkegel-Scheitelpunkt t, Lichtkegel-Parameter tmin < t

Wie ein Vergleich der Formeln für den Partikelhorizont t_{min} und den Lichtkegel zeigt, ist der Partikelhorizont t_{min} in mitbewegten Koordinaten $D_{PHmin}(t) = d(a(t_{min}), a(t), l)$ für jedes t gleich dem mitbewegten Abstand $D_{LK}(t,t_{min}) = d(a(t_{min}),a(t),l)$ des Lichtkegels LK(t) vom Beobachter zum Zeitpunkt t_{min} . Es wird also beim Partikelhorizont die untere Grenze festgehalten, und die obere Grenze wächst mit wachsendem t. In einem zweiten Schritt kann man t_{min} gegen NULL streben lassen. Der allgemeine Partikelhorizont mit Bezugszeitpunkt Urknall ist in mitbewegten Koordinaten für jedes t gleich dem mitbewegten Abstand $D_{LK}(t,0)$ des Lichtkegels LK(t) zum Zeitpunkt des Urknalls. Wegen der Nebenbedingung $t_{min} < t$ sind Partikelhorizont und der damit verbundene mitbewegte Abstand $D_{LK}(t,t_{min})$ des Beobachters vom Lichtkegel zum Zeitpunkt t_{min} stets positiv.

Man erhält den Partikelhorizont in physikalischen Koordinaten, indem man $D_{LK}(t,t_{min})$. bzw. $D_{LK}(t,0)$ für das jeweilige t mit a(t) multipliziert.

Allgemeine Bemerkungen: <u>Lichtkegel-Scheitelpunkt T, Lichtkegel-Parameter t</u>

Während bei der Betrachtung des Partikelhorizonts im Allgemeinen die obere Grenze bewegt wird, wird beim Lichtkegel im Normalfall der Scheitel T als obere Grenze festgehalten. Die untere Grenze t beschreibt in physikalischen Koordinaten den Abstand zum Beobachter eines zum Zeitpunkt t auf dem Lichtkegel gelegenen ruhenden Objekts, das auf den Beobachter gerichtete Photonen emittiert, die den Beobachter zum Zeitpunkt T erreichen. Der mitbewegte Abstand umschreibt den physikalischen Abstand des Objekts zum Beobachter zum Zeitpunkt T Bewegt man t in Richtung T, so streben auf der positiven radialen Koordinatenachse physikalische und mitbewegte Entfernung gegen NULL, um ihren Weg anschließend auf der negativen Achse fortzusetzen. Die Koordinaten nehmen also negative Werte an. Im Weiteren soll in Vorbereitung für Kap. 10.1 und Kap. 10.2 kurz der negative Teil des Lichtkegels (der Vorwärts-Lichtkegel) für den Fall t > T betrachtet werden.

Vorbereitung Kap. 10.1 und 10.2: Lichtkegel-Scheitelpunkt t_{min} , Lichtkegel-Parameter $t > t_{min}$

In Kap. 10.1 werden Lichtkegel mit im Allgemeinen sehr frühen Scheitelpunkten t_{min} behandelt. Die Koordinaten dieser Lichtkegel sind für den kurzen Zeitbereich zwischen $t^*=0$ und $t^*=t_{min}$ positiv und gehen dann in den Vorwärts-Lichtkegel mit negativen Koordinatenwerten über. Die Photonen waren auf der positiven Koordinatenachse auf den Beobachter gerichtet. Ein Vergleich der Formeln von Tabelle 4 für Lichtkegel und Partikelhorizont t_{min} ergibt

$$d_{LK}(t_{min},t) = -d(a(t_{min}),a(t),a(t)) = -d_{PHmin}(t)$$
 (physikalisch) (7)

$$D_{LK}(t_{min},t) = -d(a(t_{min}),a(t),1) = -D_{PHmin}(t)$$
 (mitbewegt) (8),

wobei das negative Vorzeichen durch Vertauschen der Integrationsgrenzen zustande kommt. Im Allgemeinen wird hier nur der Bereich $t > t_{min}$ betrachtet.

Für den Sonderfall $t_{min} = t_{CMB}$ kann man diese Formel in der Form

$$d_{LK}(t_{CMB},t) = -d(a(t_{CMB}),a(t),a(t)) = -d_{PHCMB}(t)$$
 (physikalisch) (7_{CMB})
 $D_{LK}(t_{CMB},t) = -d(a(t_{CMB}),a(t),1) = -D_{PHCMB}(t)$ (mitbewegt) (8_{CMB})

schreiben und den Lichtkegel LK(T) mit $T=t_{CMB}$ (siehe Tabelle 3) über den negativen Wert des Partikelhorizonts berechnen. Diesen Lichtkegel bezeichnen wir später auch als LK(CMB).

6.4 Gemeinsame Eigenschaften der Kugeloberflächen

In Kap. 6.1 wurde die radiale Koordinatenachse in Abhängigkeit von einer auf dieser Achse gelegenen Galaxie definiert. Die Koordinate der Galaxie ist der (physikalische) Abstand der Galaxie vom Beobachter. Diese Achse wird in Zeichnungen als horizontale Achse (neben der vertikalen Zeitachse) verwendet. Die Galaxie entfernt sich auf dem positiven Teil dieser Achse vom Beobachter. Von der Galaxie emittierte, auf den Beobachter gerichtete Photonen bewegen sich ebenfalls auf dieser Achse.

Diese Formulierungen sind in erster Linie nur für den Lichtkegel relevant, denn nur, wenn die Galaxie auf einem Lichtkegel gelegen ist, wird sie den Beobachter auch erreichen. Von den Kugeloberflächen von Hubblesphäre, Ereignishorizont und Partikelhorizont können vom Beobachter zu einem vorgegebenen mit dem Beobachter gemeinsamen Zeitpunkt t keine mit Lichtgeschwindigkeit übermittelten Informationen empfangen werden. (Ausnahmen bilden die Schnittpunkte von Hubblesphäre bzw. Partikelhorizont mit dem Lichtkegel.)

Jedoch können viele der Überlegungen von Kap. 6.1 auch auf die erwähnten drei Kugeloberflächen angewandt werden. An die Stelle der sichtbaren Galaxie tritt hier ein hypothetisches ruhendes Objekt auf einer der Kugeloberflächen, dessen Entfernung und dessen Verhalten allgemein über die kosmologische Theorie erschlossen werden können. Auch hier können ohne Beschränkung der Allgemeinheit die Formeln für die Schnittpunkte der jeweiligen von t bzw. a(t) abhängigen räumlichen Flächen mit der positiven radialen Achse herangezogen werden. In Kap. 6.2 wurden Formeln für die Abstände der Kugeloberflächen vom Beobachter hergeleitet.

Der Abstand vom Beobachter eines ruhenden Objekts oder eines Photons auf einem Lichtkegel oder auf einer der drei erwähnten Kugeloberflächen wird zu einer gemeinsamen Zeit t auf der radialen Koordinatenachse gemessen. Gedachte Objekte oder Photonen müssen also ohne Raumwinkel stets auf der gleichen Achse durch den Koordinatenursprung gelegen sein. Der mitbewegte Abstand zu Galaxien oder anderen im Hubble-Flow treibenden ruhenden Objekten ist unabhängig von der kosmologischen Zeit und auch unabhängig vom Skalenfaktor. Diese Aussage gilt nicht für bewegte Objekte wie z.B. Photonen.

7 Definition von Rückwärts-Lichtkegel, Hubblesphäre und Horizonten

7.1 Hubblesphäre und Galaxien

Die Hubblesphäre zum Zeitpunkt t ist jene Kugeloberfläche mit dem Beobachter im Mittelpunkt, auf der sich (mit dem Beobachter) mitbewegte Objekte wie als ruhend angenommene Galaxien aufgrund der Expansion des Universums genau mit Lichtgeschwindigkeit vom Beobachter entfernen. Ein auf den Beobachter gerichteter Lichtstrahl im Innern der Hubblesphäre wird den Beobachter im Λ CDM-Modell unter allen Voraussetzungen

auch erreichen. Die Entfernung des Beobachters im Scheitel des HEUTIGEN Lichtkegels zur Hubblesphäre ist in Tabelle 2 erwähnt.

Das Verhalten der Hubblesphäre im Zeitablauf ist entscheidend mit dem Zeitpunkt t_{ii} (ü für Übergang) des Übergangs von verlangsamter zu beschleunigter Expansion verbunden – siehe Tabelle 3. Nach der primären Beschleunigung durch den Urknall verlangsamt sich die Expansion für mehrere Milliarden Jahre, erkennbar am Kleinerwerden des Abbremsparameters q

$$q(t) = -a(t) a''(t) / a'(t)^{2}, (9)$$

wobei bei $t_{\ddot{u}}$ der Wert $q(t_{\ddot{u}}) = 0$ angenommen wird.

Die Rezessionsgeschwindigkeit der Hubblesphäre $d_{HS}(t)$ (radiale Koordinatenachse, physikalische Koordinaten) beträgt $d_{HS}(t) = c \ (l+q(t))$ (vgl. Harrison 1991 [9], Kap. 2.1). Da die Rezessionsgeschwindigkeit von Galaxien auf der Hubblesphäre genau c beträgt, expandiert die Hubblesphäre schneller als der sie umgebende Raum (schneller als ruhende Objekte, die sich allein durch die Expansion des Universums vom Beobachter entfernen), solange q(t)>0. Dadurch werden bei wachsendem t, solange $t< t_{ii}$, Galaxien, die sich zuvor mit mehr als Lichtgeschwindigkeit vom Beobachter entfernt haben, von der Kugeloberfläche der Hubblesphäre überholt und geraten ins Innere der Sphäre.

Wird $t > t_{ii}$, wird also q(t) < 0, tritt in Bezug auf die Rezessionsgeschwindigkeit von Galaxien nun der gegenteilige Effekt ein: der Raum expandiert schneller als die Hubblesphäre. In mitbewegten Koordinaten nimmt der Radius der Hubblesphäre sein Maximum bei t_{ii} an, zieht sich also für $t > t_{ii}$ zurück (siehe z.B. Abbildung 5). Früher innerhalb der Hubblesphäre und nahe der Kugeloberfläche gelegene Galaxien verlassen diese nun (wieder) und entfernen sich in physikalischen Koordinaten mit Überlichtgeschwindigkeit vom Beobachter.

Das Überschreiten der globalen (von Lichtkegeln unabhängigen) Hubblesphäre und deren Veränderung des Expansionsverhaltens zum Zeitpunkt t_{ii} ist nicht in einer unmittelbaren Form mit der späteren Sichtbarkeit von Galaxien verbunden. Für die Sichtbarkeit einer Galaxie zu einem bestimmten Zeitpunkt an einem bestimmten Ort ist der Pfad von der Galaxie emittierter und auf den Beobachter gerichteter Photonen (siehe "Lichtkegel" in Kap. 7.4) verantwortlich. Diesem Thema ist Kap.8.2.gewidmet.

Vorauseilend zu Kap. 8.2 sei vermerkt, dass die Hubblesphäre für -1 < q(t) < 0 weiter mit c (1+q(t)) expandiert (jetzt also geringer als mit c). Mit wachsendem t fängt die Hubblesphäre weiter auf den Beobachter gerichtete Photonen für einen gewissen Bereich jenseits der Hubblesphäre (genauer: für den für große t immer kleiner werdenden Bereich zwischen Hubblesphäre und Ereignishorizont) ein, die sich zuvor vom Beobachter entfernt hatten.

7.2 Partikelhorizont und Beobachtbares Universum

Der Partikelhorizont blickt in die Vergangenheit, der Ereignishorizont in die Zukunft.

7.2.1 Definition Partikelhorizont

Auch der Partikelhorizont ist eine Kugeloberfläche mit dem Beobachter im Ursprung des Koordinatensystems. Es ist ausreichend, die durch den Ursprung verlaufende positive radiale

Achse zur Bestimmung der Entfernung des Partikelhorizonts von Beobachter heranzuziehen. Dieses Thema ist in Kap. 6.1 behandelt. Die Unterscheidung zwischen der positiven und negativen radialen Achse ermöglicht uns, die in diesem Kapitel erwähnten Definitionen von denen in Kap. 7.2.4 und 10.2 zu unterscheiden. Positiver und negativer Radius gemeinsam umschreiben den Durchmesser der Kugeloberfläche des Partikelhorizonts. Nur die beiden Schnittpunkte des Durchmessers mit der Kugeloberfläche sind Teil des Partikelhorizonts.

<u>Hinweis:</u> Wir definieren im weiteren Teil dieses Kapitels den Partikelhorizont nur für die positive radiale Achse. Dass die Aussagen für den Durchmesser allgemein gültig sind, kann man in einer ersten Argumentation damit begründen, dass die Wahl der positiven Halbachse willkürlich ist und dass man die gleiche Herleitung auch für die jetzt als "negativ" titulierte Halbachse durchführen könnte. In den Kapiteln 10.1 und 10.2 wird dann für die negative Halbachse eine alternative Definition für den Partikelhorizont formuliert.

Der (allgemeine physikalische) Partikelhorizont zum Zeitpunkt *t* ist <u>die größte-Entfernung zum Zeitpunkt *t*</u>, aus der den Beobachter <u>seit dem Urknall emittierte</u>, mit Lichtgeschwindigkeit übermittelte Informationen erreicht haben können.

Man kann (anstelle des Urknalls) auch einen anderen Vergangenheitszeitpunkt t_{min} , im Weiteren als <u>Bezugszeitpunkt oder frühester Emissionszeitpunkt</u> bezeichnet, zur Definition eines Partikelhorizonts, bezogen auf diesen Zeitpunkt, definieren. Ab dem Zeitpunkt der Emission der Hintergrundstrahlung kann man die Definition, bezogen auf den Bezugszeitpunkt, auch verständlicher formulieren (vgl. Roos 2003 [8], S. 39 ff).

<u>Definition 1 Partikelhorizont t_{min}</u>: Der (physikalische) Partikelhorizont zum Zeitpunkt t, bezogen auf den Bezugszeitpunkt t_{min} (t_{min}<t) ist die größte räumliche Entfernung zum gemeinsamen Zeitpunkt t zwischen dem Beobachter und einem als mitbewegt angenommenen Objekt, das in der Vergangenheit <u>seit dem Bezugszeitpunkt</u> t_{min} Licht (oder mit Lichtgeschwindigkeit übermittelte Informationen) in Richtung auf den Beobachter emittiert haben könnte und dessen Licht den Beobachter zum Zeitpunkt t erreicht.

Die Formulierung "seit dem Bezugszeitpunkt t_{min}" ist so gewählt, dass die Definition für den frühesten Emissionszeitpunkt t_{min} mit der anfänglichen Definition für eine Emission seit dem Urknall unmittelbar verträglich ist. Selbstverständlich korrespondiert die größte Entfernung genau mit dem Emissionszeitpunkt t_{min}. Man könnte die "größte Entfernung" in der Definition auch eliminieren, wenn man nur (ohne das Wort "seit") den Emissionszeitpunkt t_{min} und den Empfangszeitpunkt t in die Definition einbeziehen würde. Außerdem muss angenommen werden, dass genau zum Zeitpunkt t_{min} ein ruhendes Objekt (im betrachteten Umfeld, z.B. auf der positiven radialen Koordinatenachse), das Licht auf den Beobachter zum Zeitpunkt t richtet, tatsächlich existiert hat.

Nach der Emission zum Zeitpunkt t_{min} haben sich Beobachter und emittierendes Objekt allein durch die Expansion des Universums immer weiter voneinander entfernt, zum Zeitpunkt t erreicht das emittierte Licht schließlich den Beobachter.

Die Berechnung des Partikelhorizonts, bezogen auf den Bezugszeitpunkt t_{min} , erfolgt über die entsprechende Formel in Tabelle 4. Man gewinnt den allgemeinen Partikelhorizont mit dem Bezugszeitpunkt Urknall, indem man t_{min} gegen NULL streben lässt. Es ist bekannt, dass dieser Grenzwert im Λ CDM-Modell existiert.

<u>Supremum-Definition des (allgemeinen) Partikelhorizonts (Bezugszeitpunkt Urknall):</u> Der Partikelhorizont zum Zeitpunkt *t*, bezogen auf den Bezugszeitpunkt Urknall, ist die

kleinste obere Schranke (Supremum) für Partikelhorizonte zum Zeitpunkt t, bezogen auf Bezugszeitpunkte t_{min} gemäß <u>Definition 1 Partikelhorizont t_{min} </u> (hier würde t_{min} als Variable betrachtet), mit $0 < t_{min} < t$.

Ein Problem bei der Definition des Partikelhorizonts mit einem sehr frühen Bezugszeitpunkt t_{min} in der Anfangsphase des Universum ist darin zu sehen, dass die Existenz ruhender Objekte, von denen mit Lichtgeschwindigkeit übermittelte Informationen emittiert werden, nicht ohne Weiteres angenommen werden kann. Man kann jedoch anstelle dessen das ruhende Objekt einfach hypothetisch postulieren. (Man könnte auch einen im Hubble-Flow treibenden "Beobachter" am Ort der Emission postulieren und den Abstand dieses "Beobachters" von unserem zentralen Beobachter in der Milchstraße im Zeitablauf verfolgen. Da wir aber den Begriff BEOBACHTER auf unseren zentralen Beobachter in der Milchstraße beschränken wollen, soll von dieser Terminologie kein Gebrauch gemacht werden.)

Als häufigstes Beispiel für den Zeitpunkt t_{min} wird der Zeitpunkt t_{CMB} des Emission der Hintergrundstrahlung zur Definition des (physikalischen) Partikelhorizonts CMB gewählt, der gemäß Formel (6) berechnet werden kann.

7.2.2 Partikelhorizont HEUTE

Gemäß Planck 18 (vgl. Planck 18 [1], Table 2, S. 16) weisen die *HEUTE* empfangenen Photonen des CMB (der Mikrowellenhintergrundstrahlung) eine Rotverschiebung von z=1090 auf, was einer Emissionszeit von 371'127 Jahren nach dem Urknall und einer damaligen Entfernung von 41.447549 <u>Millionen</u> Lichtjahren vom Beobachter entspricht. Der *HEUTIGE* Ort jener damals 41.447549 <u>Millionen</u> Lichtjahre vom Beobachter entfernten Position ist aufgrund der Expansion des Universums *HEUTE* 45.219275 Mrd. Lichtjahre vom Beobachter entfernt. Der Partikelhorizont CMB *HEUTE*, bezogen auf die untere Emissionsgrenze bei 371'127 Jahren, beträgt also 45.219275 Mrd. Lichtjahre.

Das Universum vor jenem Zeitpunkt bei 371'127 Jahren nach dem Urknall war lichtundurchlässig. Man kann jedoch den heutigen Ort von Positionen berechnen, von denen vor diesem Zeitpunkt emittierte, auf den Beobachter gerichtete, sich mit Lichtgeschwindigkeit fortpflanzende Informationen von jener Position vor diesem Zeitpunkt emittiert wurden bzw. emittiert worden wären. Geht man mit diesen Zeitpunkten gegen t=0, so gelangt man den HEUTIGEN Partikelhorizont von 46.132820 Mrd. Lichtjahren.

Die *HEUTIGE* Entfernung des Beobachters zum Partikelhorizont ist zusätzlich in Tabelle 2 erwähnt.

7.2.3 Beobachtbares Universum

Das Beobachtete Universum kann als das Innere der Kugel mit der Oberfläche des Partikelhorizonts (inklusive Oberfläche, bei der Supremum-Definition – siehe Kap. 7.2.1 – des Partikelhorizonts wird die Oberfläche per Definition eingeschlossen) aufgefasst werden. Zunächst wird wie in Kap. 7.2.1 die positive radiale Achse betrachtet. Anders als bei der Definition des Partikelhorizonts sind alle Koordinaten des Durchmessers Teil des Beobachtbaren Universums.

Der Partikelhorizont zum Zeitpunkt t, bezogen auf den Bezugszeitpunkt t_{min} , begrenzt den Raum des Beobachtbaren Universums t_{min} zum Zeitpunkt t, d.h. der Partikelhorizont begrenzt den Radius jenes Teils des Universums, das seit dem Zeitpunkt t_{min} in kausalen Kontakt mit dem Beobachter gekommen ist. Der auf dem positiven Teil der radialen Achse des Koordinatensystems (mit dem Beobachter im Ursprung) gelegene Radius des Beobachtbaren

Universums t_{min} zum Zeitpunkt t umschließt alle Orte zum Zeitpunkt t von ruhenden Objekten, die zu Zeitpunkten t^* mit $t_{min} \le t^* < t$ mit Lichtgeschwindigkeit übermittelte Informationen auf den Beobachter gerichtet haben. (Ruhende Objekte haben wir stets auf der positiven radialen Koordinatenachse angenommen.)

Für den Sonderfall $t_{min} = t_{CMB}$ verwenden wir die Bezeichnung <u>Beobachtbares Universum</u> <u>CMB</u>.

Man gewinnt wieder das (allgemeine) Beobachtbare Universum (zum Bezugszeitpunkt Urknall), indem man t_{min} gegen NULL streben lässt. Der durch den Ursprung des Koordinatensystems verlaufende Durchmesser (siehe <u>Hinweis</u> in Kap. 7.2.1) des (allgemeinen) Beobachtbaren Universums ist durch den Partikelhorizont mit dem Bezugszeitpunkt Urknall begrenzt.

Das Beobachtbare Universum zum Zeitpunkt t, bezogen auf den Bezugszeitpunkt t^{**} $(0 < t^{**} < t)$, ist Teil des Beobachtbaren Universums zum Zeitpunkt t, bezogen auf den Bezugszeitpunkt t^{*} $(0 < t^{*} < t^{**})$. Jedes beobachtbare Universum zum Zeitpunkt t, bezogen auf den Bezugszeitpunkt t^{*} $(0 < t^{*} < t)$, ist Teil des (allgemeinen) Beobachtbaren Universums zum Zeitpunkt t, bezogen auf den Bezugszeitpunkt Urknall.

7.2.4 Hinweis auf eine alternative Definition des Partikelhorizonts

In Kap. 10.1 zeigen wir zusätzlich, dass der negative Radius des auf der radialen Koordinatenachse gelegenen Teils des Beobachtbaren Universums jene mit Lichtgeschwindigkeit übertragenen Partikel (i.a. Photonen) umschließt, die den Beobachter zu einem Zeitpunkt $t^* < t$ passiert haben. Auf diese Weise wird in Kap. 10.2 eine alternative Definition des Partikelhorizonts hergeleitet.

Da positive und negative Koordinatenachse willkürlich gewählte Richtungen darstellen, besteht das Beobachtbare Universum generell aus beiden Bestandteilen.

7.3 Kosmologischer Ereignishorizont

Der Partikelhorizont blickt in die Vergangenheit, der Ereignishorizont in die Zukunft.

Bei der Definition des kosmologischen Ereignishorizonts stellt man die Frage nach der kleinsten oberen Schranke dafür, wie weit ein mitbewegtes Objekt zum Zeitpunkt t vom Beobachter entfernt sein darf, damit von diesem Objekt emittierte, auf den Beobachter gerichtete Photonen den Beobachter in endlicher Zukunft noch erreichen können.

Die Formulierung der kleinsten oberen Schranke ist erforderlich, da ein vom Ereignishorizont emittierter, auf den Beobachter gerichteter Lichtstrahl diesen gerade nicht mehr erreicht. Salopp wird bisweilen formuliert, dass dieser Lichtstrahl den Beobachter zum Zeitpunkt *UNENDLICH* erreicht, während ein von jenseits des Ereignishorizonts emittierter Lichtstrahl den Beobachter auch zum Zeitpunkt *UNENDLICH* nicht mehr erreicht. Genaugenommen handelt es sich jedoch um eine falsche Grenzwertbildung. Ein vom Ereignishorizont auf den Beobachter gerichtetes Photon wird für immer auf dem Ereignishorizont bleiben. Auf den Beobachter gerichtete Photonen jenseits des Ereignishorizonts werden sich immer weiter vom Beobachter entfernen (Divergenz gegen *UNENDLICH*), werden diesen also nie erreichen.

Der Raum zwischen Hubblesphäre und Ereignishorizont wird mit wachsendem t zunehmend kleiner. (Für sehr große t sind Hubblesphäre und Ereignishorizont in Zeichnungen praktisch nicht mehr voneinander zu unterscheiden.) Der Ereignishorizont kann auch dadurch

charakterisiert werden, dass die Rezessionsgeschwindigkeit des Ereignishorizonts für jedes t genau um l c (Lichtgeschwindigkeit c) geringer ist als die Rezessionsgeschwindigkeit einer Galaxie auf dem Ereignishorizont.

Die *HEUTIGE* Entfernung des Beobachters zum kosmologischen Ereignishorizont ist in Tabelle 2 erwähnt.

7.4 Lichtkegel

Wenn wir hier vom Lichtkegel LK(T) sprechen, so ist damit der Mantel des Lichtkegels mit dem Scheitel des Rückwärts-Teilkegels zum Zeitpunkt T gemeint. Für jedes t < T überstreicht der Mantel die räumlichen Koordinaten jener Ereignisse zum Zeitpunkt t, die aufgrund einer Übermittlung mit Lichtgeschwindigkeit am Scheitel SICHTBAR sind. Zu jedem Zeitpunkt t ist dieser Mantel eine Kugeloberfläche (d.h. die Grenzfläche, nicht das Kugelinnere) mit dem Beobachter im Zentrum und dem Radius $d_{LK}(T,t)$ (siehe Tabelle 4).

Galaxien, die der Beobachter zum Zeitpunkt T SEHEN kann (d.h. von denen er mit Lichtgeschwindigkeit auf geodätischem Pfad übermittelte Informationen empfangen kann), sind auf dem Rückwärts-Lichtkegel (genauer: auf dem Mantel des Rückwärts-Lichtkegels) gelegen, auf dessen Scheitel sich der Beobachter gerade befindet. Der Lichtkegel LK(T) mit Scheitel beim Zeitpunkt T zeichnet also in Bezug auf die Vergangenheit alle zum Zeitpunkt T SICHTBAREN Ereignisse nach.

Jede zum Zeitpunkt T SICHTBARE Galaxie (wie auch jedes andere Objekt, von dem der Beobachter mit Lichtgeschwindigkeit übermittelte Informationen empfangen werden kann) ist durch ihre Lichtlaufzeit zum Beobachter und ihre physikalische Entfernung zur Weltlinie des Beobachters gekennzeichnet. Da physikalische Entfernungen für Inertialsysteme mit gleicher kosmologischer Zeit definiert sind, wird die Eigendistanz oder physikalische Distanz zwischen dem Beobachter zum Zeitpunkt t und der betreffenden Galaxie zum Zeitpunkt t ermittelt. Die zugehörige mitbewegte Distanz entspricht der Eigendistanz, geteilt durch a(t).

Hubblesphäre, Ereignishorizont und Partikelhorizont sind globale Konstrukte der Raumzeit, die zu jedem Zeitpunkt t durch die physikalische Entfernung zum Beobachter zum Zeitpunkt t umschrieben werden können. Jedem Zeitpunkt ist genau eine Entfernung (der Kugelradius) zugeordnet.

Die raumzeitliche Struktur des Lichtkegels hingegen ist komplexer gestaltet. Betrachtet man Lichtkegel LK(T) mit veränderlichem Scheitelpunkt T, so ändert sich die gesamthafte Struktur für alle Zeitpunkte t, zu denen Objekte auf dem jeweiligen Lichtkegel Photonen emittieren, die zum Zeitpunkt T empfangen werden. Ist $T^* < T$ und wird mit LK(T) bzw. $LK(T^*)$ der jeweilige Lichtkegel mit Scheitel bei T bzw. T^* bezeichnet, so ist zu jedem Zeitpunkt $t < T^*$ die physikalische Entfernung $d_{LK}(T^*,t)$ (siehe Tabelle 4) auf dem Lichtkegel $LK(T^*)$ kleiner als die Entfernung $d_{LK}(T,t)$ auf dem Lichtkegel LK(T).

Es gilt also: ist $T^* < T$, so folgt $d_{LK}(T^*,t) < d_{LK}(T,t)$ für alle $t < T^*$. Diese Aussage kann man anhand von Abbildung 1 überprüfen.

Wie man z.B. Abbildung 7 entnehmen kann, kann man diese Aussage auf alle t seit dem Urknall bis t gegen UNENDLICH fortsetzen. Die Bedingung "für alle $t < T^*$ " kann also durch "für alle t $(0 < t < \infty)$ " ersetzt werden.

Hilfreich zum Verständnis können die insbesondere die animierten Zeichnungen von Yukterez [3] dienen, die in Kap. 8.1 genauer erläutert sind.

Betrachtet man nun einen festen Scheitelpunkt T, so zeigt Abbildung 1 auch, dass das Innere des Lichtkegels LK(T) von Ereignissen gebildet wird, die dem Beobachter zu Zeitpunkten $T^* < T$ durch Übermittlung mit Lichtgeschwindigkeit zur Kenntnis gelangt sind.

8 Zusammenspiel von Rückwärts-Lichtkegeln, Hubblesphäre, Horizonten und Galaxien

8.1 Hinweis auf Zeichnungen anderer Autoren

Das Zusammenwirken von Lichtkegeln, Hubblesphäre, Horizonten und Galaxien werden wir im Folgenden auch anhand von Zeichnungen exemplarisch darlegen. Einige dieser Zeichnungen basieren zum Teil auf Vorlagen, die hier kurz dargelegt werden sollen.

Besondere Erwähnung finden sollen dabei zunächst die animierten Zeichnungen von Yukterez (Simon Tyran, Wien) [3].

Die beiden Zeichnungen (eine für physikalische, die andere für mitbewegte Koordinaten) zeigen auf der waagerechten Achse eine durch das Zentrum der expandierenden Kugeloberflächen von Hubblesphäre (englisch: hubble sphere), Ereignishorizont (englisch: event
horizon) und Partikelhorizont (englisch: particle horizon) verlaufende Gerade, die ohne
Beschränkung der Allgemeinheit als eine der 3 räumlichen Koordinatenachsen aufgefasst
werden kann. Animiert dargestellt ist der Lichtkegel (englisch: light cone), der seine Gestalt
im Zeitverlauf für alle Vergangenheitszeitpunkte (und auch alle Zukunftszeitpunkte) insgesamt
ändert. Der Mantel des Rückwärts-Lichtkegels zeichnet alle Ereignisse nach, die man im
Scheitelpunkt des Lichtkegels SEHEN kann. In der Grafik wandert dieser Scheitel von der
frühen Vergangenheit bis in die fernere Zukunft, wobei der HEUTIGE Zeitpunkt durch eine
waagerechte Linie besonders gekennzeichnet ist.

Zusätzlich zu den animierten Zeichnungen von Yukterez liefert Figure 1 des Artikels von Davis/Lineweaver, 2003 [4] bzw. Figure 1.1 der Dissertation von T. M. Davis, 2003 [5] mehrere ausgezeichnete Zeichnungen. Es handelt sich um die Darstellung analoger kosmologischer Konstrukte wie jene von Yukterez. Anders als bei Yukterez kann man die (unbewegliche) Zeichnung samt ausführlichen Erläuterungen in Ruhe studieren.

8.2 Lichtkegel und Hubblesphäre

In Kap. 7.1 wurde das Zusammenspiel zwischen Hubblesphäre und Galaxien erläutert. Häufiger und für die praktische Arbeit in der Astronomie wichtiger ist der Umstand, dass von Galaxien jenseits des Hubblesphäre emittiertes, auf den Beobachter gerichtetes Licht, das sich bisher vom Beobachter entfernt hatte, nun von der Hubblesphäre eingefangen wird, wodurch diese Galaxien für den Beobachter sichtbar werden, auch dann, wenn die Galaxien selbst weiterhin außerhalb der Hubblesphäre gelegen sind (vgl. Davis/Lineweaver 2003 [4], Kap. 3.3 oder Davis 2003 [5], Kap. 2-1.3). Kap. 8.2 befasst sich nun mit dem Zusammenspiel zwischen Hubblesphäre und auf den Beobachter gerichteten Photonen.

8.2.1 Lichtkegel und Hubblesphäre: Zeichnungen

Abbildung 1 zeigt die ineinander verschachtelten Rückwärts-Lichtkegel für verschiedene Scheitelpunkte. Jeder Lichtkegel mit einem höhergelegenen (zeitlich weiter vom Urknall

entfernten) Scheitelpunkt schließt den tiefergelegenen vollständig ein. Die Form der Lichtkegel wird mit Begriffen wie Träne, Tropfen (englisch oft: teardrop) oder auch Birne bezeichnet.

Alle Lichtkegel sind im unteren Bereich der Zeichnung jeweils unterhalb der Hubblesphäre gelegen. Die Hubblesphäre schneidet jeden eingezeichneten Lichtkegel, und zwar stets zum Zeitpunkt der größten Entfernung des Lichtkegels vom Beobachter. Auf einem Lichtkegel gelegene Galaxien entfernen sich also unterhalb des Schnittpunkts t_i (zeitlich vor Erreichen des Schnittpunkts) mit Überlichtgeschwindigkeit vom Beobachter. Von der Galaxie emittierte, auf den Beobachter gerichtete, sich einst vom Beobachter entfernende Photonen wurden zum Zeitpunkt t_i von der sich vergrößernden Hubblesphäre überholt, wodurch diese sich dem Beobachter annäherten und die Galaxie SICHTBAR wurde.

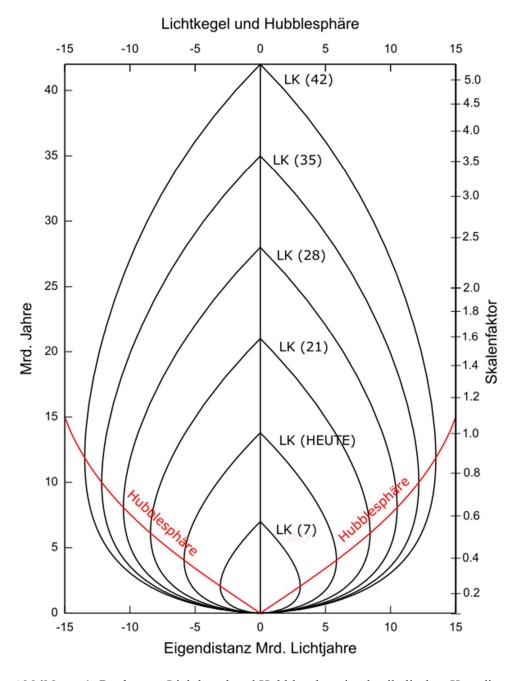


Abbildung 1: Rückwärts-Lichtkegel und Hubblesphäre in <u>physikalischen</u> Koordinaten. *LK(T)* bezeichnet den Rückwärts-Lichtkegel mit einem Scheitel bei *T* Milliarden Jahren nach dem Urknall. Die senkrechte Mittellinie ist die Weltlinie des Beobachters.

Alle heute mit einer Rotverschiebung z(HEUTE) > 1.5876364 SICHTBAREN Galaxien (Schnittpunkt t_i zwischen Lichtkegel mit Scheitelpunkt HEUTE und der Hubblesphäre: $t_i = 4.0534118$ Mrd. Jahre nach dem Urknall, beim Skalenfaktor a = 0.38645306, haben sich zum Zeitpunkt der Lichtemission mit Überlichtgeschwindigkeit vom Beobachter entfernt, die meisten davon (alle, die nie von der Hubblesphäre überholt wurden) zu allen Zeiten.

Im Falle unseres *HEUTIGEN* Lichtkegels gilt also $t_i < t_{ii}$. Diese Bedingung ist, wie in Kap. 7.1 erläutert, dem Überholen von Photonen durch die Hubblesphäre zwar sehr förderlich, aber nicht zwingend notwendig.

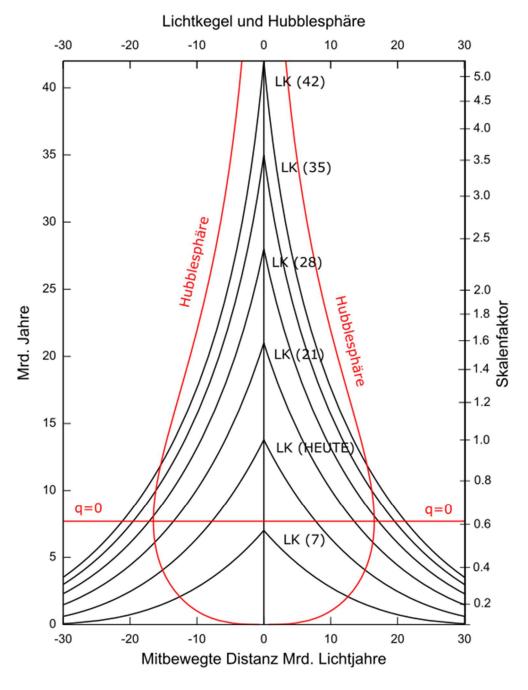


Abbildung 2: Rückwärts-Lichtkegel und Hubblesphäre in <u>mitbewegten</u> Koordinaten. *LK(T)* bezeichnet den Rückwärts-Lichtkegel mit einem Scheitel bei *T* Milliarden Jahren nach dem Urknall. Die senkrechte Mittellinie ist die Weltlinie des Beobachters.

Abbildung 2 zeigt alle Konstrukte von Abbildung 1 nun in mitbewegten Koordinaten. Insbesondere ist jetzt jene Linie ausgearbeitet, bei der der Abbremsparameter q den Wert NULL annimmt. Unterhalb der "q=0"-Linie expandiert die Hubble-Sphäre schneller als der Raum (schneller als ruhende Objekte, die sich allein durch die Expansion des Universums vom Beobachter entfernen), oberhalb expandiert der Raum schneller als die Hubblesphäre. Dieses Thema ist im Detail in Kap. 7.1 dargelegt.

Tabelle 6: Schnittpunkte Lichtkegel-Hubblesphäre

Schnittpunkt Hubble-	†	Physikalische	Mitbewegte
sphäre LK(Mrd. Jahre)	Mrd. Jahre nach	Entfernung	Entfernung
spirate Lix(wird. Jame)			\mathcal{E}
	dem Urknall	Mrd. Lichtjahre	Mrd. Lichtjahre
LK(7)	2.0682864	3.0738076	12.574356
LK(HEUTE)	4.0534118	5.8513981	15.141291
LK(21)	6.1204295	8.4280617	16.295219
q=0 (siehe Tabelle 3)	7.6931755	10.122295	16.516757
LK(28)	8.0814764	10.503146	16.504904
LK(35)	9.9990437	12.168466	16.148150
LK(42)	11.878923	13.472776	15.443147
LK(56)	15.552914	15.242900	13.541327
LK(70)	19.151137	17.195583	12.163203
Folge der Schnitt-	∞	17.529543	0
punkte für t $\rightarrow \infty$			

Die folgende Tabelle zeigt die mitbewegte Entfernung vom Beobachter bei t=0. Die Lichtkegel LK(56) und LK(70) sind in den Abbildungen 4 und 5 vorzufinden.

Tabelle 7: Mitbewegte Lichtkegel-Distanz vom Beobachter bei t=0

	Mrd. Lichtjahre
Ereignishorizont	62.812172
LK(70)	62.147666
LK(56)	61.335265
LK(42)	59.529309
LK(35)	57.916589

	Mrd. Lichtjahre
LK(28)	55.506670
LK(21)	51.885625
LK(HEUTE)	46.132820
LK(7)	37.208341

In Kap. 8.4 wird das Thema behandelt, wo sich eine vom Scheitel bei T SICHTBARE, als ruhend angenommene Galaxie zu einem späteren Zeitpunkt aufhalten wird.

8.2.2 Lichtkegel und Hubblesphäre: Tabellen

In Kap. 7.1 wurde die Expansion der Hubblesphäre erläutert. In Kap. 8.2.1 wurden die Folgen dieser Expansion auf die Schnittpunkte zwischen Hubblesphäre und Lichtkegel in Form von Zeichnungen dargelegt. Diese Zusammenhänge sollen noch durch zwei Tabellen erläutert werden, in denen zusätzliche Werte aufgeführt sind (Hubble-Parameter, Rezessionsgeschwindigkeiten), die den Zeichnungen nicht entnommen werden können. Entfernungen sind in physikalischen Koordinaten dargestellt. H bezeichnet den Hubble-Parameter in Abhängigkeit von a bzw. t, HS x LK(HEUTE) den Schnittpunkt zwischen Hubblesphäre und LK(HEUTE) und Hs x LK(42) den zwischen Hubblesphäre und LK(42). Nicht aufgeführt sind Werte von LK(HEUTE) später als HEUTE. Zu t u siehe Kap. 7.1.

Tabelle 8.1: Rezessionsgeschwindigkeiten (Rez), Hubble-Parameter (H), Hubblesphäre (HS), LK(HEUTE), LK(42) in Vielfachen der Lichtgeschwindigkeit.

Η $\overline{\text{Rez HS in } c}$ Rez LK(Hte) Rez LK(42) t Mrd. Jahre km/s/Mpc in c in c 0.00091659028 **CMB** 1565562.5 1.6209175 66.362491 86.022787 1.4899949 0.15028845 652.29272 2.7036283 4.0467412 0.31435636 3 221.85225 1.4056118 1.2948450 2.2503446 0.38645306 167.10403 1.3332001 1.0000000 1.8847653 4.0534118 (<t_{ii}) HS x LK(HEUTE) 0.44752947 5 138.15453 1.2557540 0.81369986 1.6607930 0.54165926 0.57084796 7 103.96075 1.0683606 1.3547411 0.61284999 7.6931755 96.597882 1.0000000 0.46939001 1.2804747 $t_{\ddot{u}}$: (q=0) 0.69217833 9 86.186720 $0.871829\overline{24}$ 1.1679987 0.35065875 0.81617343 11 75.791144 0.68761399 0.195370601.0428815 0.87241130 72.575408 0.61400627 0.13252862 1.0000000 11.878923 (>t_{\u00fc}) HS x LK(42) 13 69.287877 0.52791456 0.054502810 0.95277735 0.94625338 **HEUTE** 67.4 0.47268419 0 0.92343066 $\overline{0.72883538}$ 21 58.930373 1.5821007 0.15611614 2.3895306 28 56.712124 0.0489218460.55751041 3.5762041 35 56.059448 0.014934972 0.330661285.3376959 42 55.863962 0.0045230186 0 55.779676 ∞ -∞ ∞ $-\infty$ $H_0* \Omega_{\Lambda}^{-1/2}$

Tabelle 8.2: Eigendistanzen (Ed.) Hubblesphäre (HS), LK(HEUTE), LK(42) in Mrd. .Lichtjahren

.Lichtjani ch					
a	t	a'(t) = H(t) a(t)	Ed. HS	Ed. LK(Hte)	Ed. LK(42)
	Mrd. Jahre	km/s/Mpc	Mrd. Lichtj.	Mrd. Lichtj.	Mrd. Lichtj.
0.00091659028	CMB	1435.0	0.00062456288	0.041447549	0.053726640
0.15028845	1	98.032	1.4990083	4.0527614	6.0660988
0.31435636	3	69.741	4.4074027	5.7069034	9.9181747
0.38645306	4.0534118	64.578	5.8513981	5.85139801	11.028512
	HS x LK(HTE.)			Maximum	
0.44752947	5	61.828	7.0775256	5.7589816	11.754305
0.57084796	7	59.346	9.4053975	5.0945206	12.741879
0.61284999	<mark>7.6931755</mark>	59.200	10.122295	4.7513039	12.961342E
	q=0	Minimum			
0.69217833	9	59.657	11.345045	3.9782393	13.250998
0.81617343	11	61.859	12.901141	2.5205036	13.454361
0.87241130	11.878923	63.316	13.472776	1.7855284	13.472776
	HS x LK(42)				Maximum
0.94625338	13	65.564	14.112024	0.76914499	13.445617
1	HEUTE	67.4	14.507303	0	13.396488
1.5821007	21	93.234	16.592330		12.093077
2.3895306	28	135.52	17.241326		9.6122188
3.5762041	35	200.48	17.442059		5.7674137
5.3376959	42	298.18	17.503095		0
∞	∞	∞	17.529543	-∞	-∞
			$c / (H_0 * \Omega_{\Lambda}^{-1/2})$		

8.2.3 Expansion von Vielfachen der Hubblesphäre

Hubblesphäre und Ereignishorizont sind Kugeloberflächen, der Lichtkegel LK(T) beschreibt eine Sequenz von Kugeloberflächen. Die weitere Darstellung ist am Verhalten dieser Kugeloberflächen auf der positiven radialen Achse im Zeitablauf dieser Kugeloberflächen (z.B. "unterhalb des Schnittpunkts") orientiert, die man auch den Zeichnungen entnehmen kann.

Der Verlauf von Lichtkegeln LK(T), Hubblesphäre und Ereignishorizont ist durch die Formeln von Tabelle 4 vollständig belegt. Weitere zusätzliche Beweise für bestimmte erwähnte Verhaltensweisen wie z.B. die Rezession mit Überlichtgeschwindigkeit von Galaxien unterhalb des Schnittpunkts zwischen Hubblesphäre und Lichtkegel sind nicht erforderlich. Die im Folgenden genannten Eigenschaften sollen lediglich verschiedene dieser Verhaltensweisen besser verständlich machen.

Die Rezessionsgeschwindigkeiten von Galaxien können über das Hubble-Lemaître-Gesetz berechnet werden. Die Rezessionsgeschwindigkeit des Ereignishorizonts beträgt die einer Galaxie auf dem Ereignishorizont minus c, die des Partikelhorizonts die einer Galaxie auf dem Partikelhorizont plus c. Jeder Lichtkegel ist kurz nach dem Urknall zwischen Hubblesphäre und Ereignishorizont gelegen und verbleibt zunächst zwischen beiden Kugeloberflächen, bis der Lichtkegel die Hubblesphäre schneidet. Sichtbar unterhalb des Schnittpunkts sind auf dem Lichtkegel gelegene Galaxien, die sich mit Überlichtgeschwindigkeit vom Beobachter entfernen. Für die Sichtbarkeit verantwortlich sind von der jeweiligen Galaxie emittierte, auf den Beobachter gerichtete Photonen, die von der sich vergrößernden Hubblesphäre überholt wurden. Galaxien oberhalb dieses Schnittpunkts, also im Inneren der Hubblesphäre, entfernen sich mit einer Rezessionsgeschwindigkeit < c vom Beobachter.

Die Rezessionsgeschwindigkeit eines auf den Beobachter gerichteten Photons beträgt an jedem Ort zu jeder Zeit genau jene hypothetische Rezessionsgeschwindigkeit eines ruhenden Objekts am gleichen Ort zur gleichen Zeit, minus c. Entfernt sich ein hypothetisches ruhendes Objekt innerhalb der Hubblesphäre mit einer Geschwindigkeit v_{rez} vom Beobachter, so nähert sich ein von diesem Objekt in Richtung auf den Beobachter emittiertes Photon dem Beobachter zum Emissionszeitpunkt mit einer Geschwindigkeit von c- v_{rez} an.

Das Expansionsverhalten der Hubblesphäre ist kein Vorgang, der allein die Kugeloberfläche mit der Expansionsgeschwindigkeit c betrifft. Wendet man das Hubble-Lemaître-Gesetz v = HD auf $v = \gamma$ c mit $\gamma > 1$ an, so ist die Lösung $D = \gamma$ c / $H = \gamma$ d_{HS} (zur Notation siehe Tabelle 4) auch für Vielfache von c (γ c-Kugeloberfläche) anwendbar. Weil auf der radialen Achse d_{HS} (t)=t0 (t1+t1) (t2) (t3) (t4) (t3) (t4) (t4) die Rezessionsgeschwindigkeit von t3) (t4) die Rezessionsgeschwindigkeit von t4) (t5)

Da die Rezessionsgeschwindigkeit von Galaxien auf der γ c-Kugeloberfläche genau γc beträgt, expandiert die γ c-Kugeloberfläche, solange q(t)>0, schneller als eine Galaxie, die sich mit dem γ -fachen der Lichtgeschwindigkeit vom Beobachter entfernt. Wieder überholt die γ c-Kugeloberfläche, sofern -1 < q(t) (was im Λ CDM-Modell für endliche t immer der Fall ist), nahe der Fläche gelegene, auf den Beobachter gerichtete Photonen und, sofern 0 < q(t) (also $t < t_{ii}$), auch nahegelegene Galaxien. Mit zunehmendem γ wird der Faktor γ c (1+q(t)), mit dem die γ c-Kugeloberfläche expandiert, anstiegsmäßig linear größer als die Rezessionsgeschwindigkeit von Galaxien auf dieser Fläche.

Ziel dieser Darstellung war, das Rezessionsverhalten von Galaxien und Photonen auf einem Lichtkegel verständlicher zu machen. Ein weiterer Beweis war, wie anfangs erwähnt, weder erforderlich noch geplant. Alle auf dem Lichtkegel gelegenen (auf den Beobachter gerichteten) Photonen sind von diesen Überholvorgängen bzw. vom Abbremsen aller Rezessionsgeschwindigkeiten im gesamten Universum seit einem Zeitpunkt kurz nach dem

Urknall bis zum Zeitpunkt t_{ii} betroffen. Die Abbremsvorgänge sind umso stärker, je weiter ein ruhendes Objekt oder ein Photon vom Beobachter entfernt ist.

Galaxien verlassen durch ihre Rezession den Lichtkegel LK(T) und schneiden in der Folge andere Lichtkegel $LK(T^*)$ mit $T^*>T$. Auf den Beobachter gerichtete Photonen formen den Lichtkegel.

Hilfreich kann hier ein Blick auf die Abbildungen 3 und 4 sein. Die Galaxie SPT0418-47 entfernt sich dort 1.4 Mrd. Jahre nach dem Urknall mit 2.2-facher Lichtgeschwindigkeit vom Beobachter. Weitere Details sind in Kap. 8.4 erwähnt.

Als ein zusätzliches Verständniselement kann das Verhalten von Photonen in Bezug auf dem Ereignishorizont dienen. Jedes Photon diesseits des Ereignishorizonts wird den Beobachter auch erreichen. Liegt das Photon außerhalb der Hubblesphäre, muss es auf seinem Weg zum Beobachter die Hubblesphäre schneiden, was zum Verständnis insbesondere für sehr große T als Scheitelpunkte von Lichtkegeln und $t > t_{ii}$ hilfreich ist. Hubblesphäre innen und Ereignishorizont außen konvergieren für $t \to \infty$ gegen den gleichen endlichen Grenzwert $c / (H_0 * \Omega_A^{1/2})$.

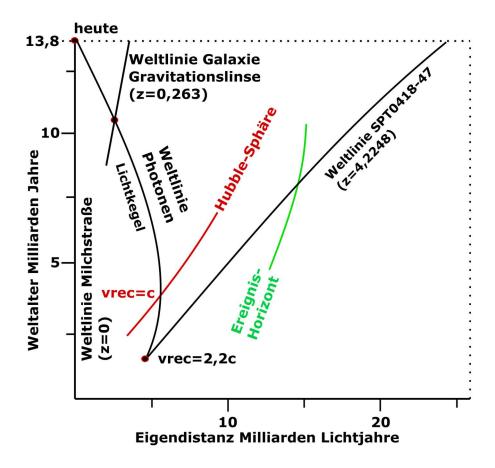
Die obige Darstellung ist am Fall $t < t_{ii}$ orientiert, um die Entwicklung von Rezessionsgeschwindigkeiten beim Entstehen des *HEUTIGEN* Lichtkegels (Schnittpunkt mit der Hubblesphäre zum Zeitpunkt $t_i < t_{ii}$, siehe Kap. 8.2.1) nachzuzeichnen. Die zu Kap. 7.1 analogen Aussagen für den Fall $t > t_{ii}$ lassen sich ebenfalls ohne Schwierigkeiten herleiten.

8.3 Zweiseitige und einseitige Zeichnungen

Abbildungen 1 und 2 folgen dem Vorbild von Yukterez [3] und Davis/Lineweaver 2003 [4] bzw. T. M. Davis 2003 [5] (siehe Kap. 8.1) dahingehend, dass neben der positiven radialen Achse zusätzlich die zugehörige negative Achse abgebildet ist. Die Zeichnungen haben so einen symmetrischen Aufbau. Ganz offensichtlich liefert die negative Achse aber keine Zusatzinformationen.

Im nächsten Kapitel wollen wir jedoch zusätzlich das Verhalten von Galaxien studieren. Eine (als ruhend angenommene) Galaxie entfernt sich auf der positiven Achse vom Beobachter, eine Symmetrie ist daher nicht mehr gegeben. Wir verwenden daher im Weiteren Zeichnungen, in denen nur die positive Achse abgebildet ist.

Erst in Kap. 10 bei der Behandlung des Vorwärts-Lichtkegels (Zukunfts-Lichtkegels) wird die negative Achse wieder eingeführt. Ein Photonenstrahl, der den Scheitelpunkt eines Lichtkegels passiert hat, setzt sich auf der negativen Achse fort.


8.4 Lichtkegel und Galaxien

Jede Galaxie auf einem Lichtkegel entfernt sich aufgrund der Expansion des Universums vom Beobachter, während von der jeweiligen Galaxie emittierte, auf den Beobachter gerichtete Photonen Teil des Lichtkegels sind und den Beobachter schließlich erreichen.

Als Beispiel für die Auswahl von Galaxien soll der Wikipedia-Artikel über die Galaxie SPT0418-47 [6] herangezogen werden. Diese Galaxie ist *HEUTE* unter einer Rotverschiebung von z(HEUTE)=4.2248 SICHTBAR. Eine in Sichtlinie befindliche Galaxie bei

z(HEUTE)=0.263 konnte als Gravitationslinse dienen. Erst diese gravitative Vergrößerung ermöglichte es Forschern, die Galaxie in ihrem Zustand 1.4 Milliarden Jahre nach dem Urknall (dem Emissionszeitpunkt des HEUTE empfangenen Lichts) genauer zu untersuchen.

Der Wikipedia-Artikel enthält die folgende Zeichnung des Autors des hier vorliegenden Artikels. Die Wikipedia-Erläuterung [7] zu dieser Zeichnung enthält eine große Anzahl von kosmologischen Details, die für die SPT0418-47 relevant sind. Man kann die folgenden Zeichnungen aber auch ohne Lektüre der beiden erwähnten Wikipedia-Veröffentlichungen verstehen.

Abbildung 3: Für SPT0418-47 relevante Weltlinien (aus Wikipedia [6])

SPT0418-47 und Gravitationslinse werden in den folgenden Zeichnungen bis in die fernere Zukunft verfolgt. Es sei noch darauf hingewiesen, dass die Gravitationslinse selbstverständlich genau auf der lichtartigen Geodäte von SPT0418-47 zum Beobachter, also ohne Raumwinkel ebenfalls auf der Koordinatenachse, gelegen ist.

Das Zusammenspiel zwischen Lichtkegeln und (in rot) Hubblesphäre wurde bereits in Kap. 8.2 ausführlich erläutert. In den Abbildungen 4 und 5 ist zusätzlich (in grün) der Ereignishorizont eingezeichnet, der alle Lichtkegel und die Hubblesphäre von außen einschließt. Mit größer werdendem t nähert sich die Hubblesphäre immer mehr dem Ereignishorizont und ist schließlich in der Zeichnung vom Ereignishorizont nicht mehr zu unterscheiden.

Die Lichtkegel LK(T) konvergieren für $T \rightarrow \infty$ für jedes feste t gegen den Ereignishorizont von t. (Achtung: Für jedes feste T schneidet der Lichtkegel für $t \rightarrow \infty$ irgendwann die Hubblesphäre, erreicht den Beobachter und setzt anschließend seinen Weg mit negativen Koordinaten auf der radialen Koordinatenachse fort. Bei Verwendung physikalischer Koordinaten strebt $d_{LK}(T,t)$ gegen $-\infty$.)

Das untere Ende der Weltlinien der Galaxien in den Abbildungen 4 und 5 ist willkürlich gewählt.

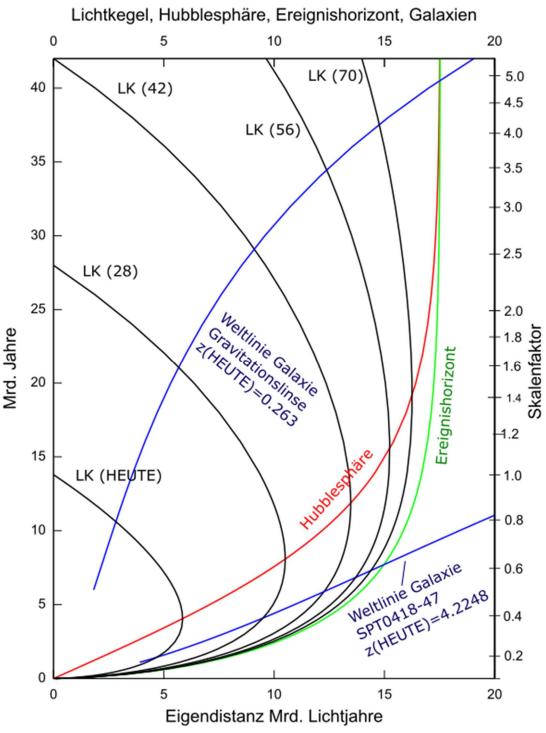


Abbildung 4: Rückwärts-Lichtkegel, Hubblesphäre, Ereignishorizont und Weltlinien von Galaxien in <u>physikalischen</u> Koordinaten. LK(T) bezeichnet den Rückwärts-Lichtkegel mit einem Scheitel bei T Milliarden Jahren nach dem Urknall. Die senkrechte linke Koordinatenachse ist zugleich die Weltlinie des Beobachters.

Man sieht in Abbildung 4 im unteren Bereich die Weltlinie der Galaxie SPT0418-47, ausgehend von ihrem Schnittpunkt mit dem Lichtkegel *LK(HEUTE)*. Die Geodäte der Photonen, die bei

diesem Schnittpunkt emittiert wurden und heute sichtbar sind, ist vollständig auf *LK(HEUTE)* gelegen. Bei ihrer weiteren Entfernung vom Beobachter schneidet die Galaxie nun andere Lichtkegel. Beim Scheitel von *LK(28)* ist die Galaxie nun im Schnittpunkt der Weltlinie von SPT0418-47 und dem Lichtkegel *LK(28)* zu beobachten. Genauer: Der Beobachter SIEHT *28 Milliarden Jahre* nach dem Urknall nun Ereignisse, die an jenem Schnittpunkt stattgefunden haben und durch auf den Beobachter gerichtete Photonen übermittelt wurden. Diese Überlegungen können für alle weiteren Schnittpunkte der Weltlinien der beiden Galaxien (SPT0418-47 und Gravitationslinse) mit Lichtkegeln fortgesetzt werden.

Tabelle 9: Schnittpunkt Lichtkegel-Weltlinie SPT0418-47

Schnittpunkt	t	Physikalische	Rezessions-	Mitbewegte
Weltlinie	Mrd. Jahre	Entfernung	geschwindig-	Entfernung
SPT0418-47 -		Mrd. Lichtjahre	keit Galaxie	Mrd.
LK(Mrd. Jahre)			in c	Lichtjahre
LK(7)	0.31584035	1.7033891	3.5831075	
LK(HEUTE)	1.4361299	4.6714397	2.1763846	
LK(21)	2.8455184	7.4017051	1.7667070	
LK(28)	4.0952206	9.4996056	1.6081753	
LK(35)	5.1104136	11.093075	1.5373640	24.407338
LK(42)	5.8816039	12.265192	1.5049525	
LK(56)	6.8412810	13.697611	1.4832933	
LK(70)	7.3086362	14.389652	1.4788271	
Ereignishorizont	7.7083941	14.980526	1.4777335	

Naturgemäß gelten diese Eigenschaften analog für die Gravitationslinse.

Tabelle 10: Schnittpunkt Lichtkegel-Weltlinie Gravitationslinse

Schnittpunkt	t	Physikalische	Rezessions-	Mitbewegte
Weltlinie Gravi-	Mrd. Jahre	Entfernung	geschwindig-	Entfernung
tationslinse -		Mrd. Lichtjahre	keit Galaxie	Mrd. Lichtjahre
LK(Mrd. Jahre)		-	in c	
LK(7)	5.1691795	1.6359020	0.22444286	
LK(HEUTE)	10.612430	2.8268527	0.22385459	
LK(21)	16.151342	4.1787393	0.27042794	
LK(28)	21.080454	5.6760435	0.34183130	
LK(35)	25.429320	7.3449709	0.42993108	3.5703150
LK(42)	29.116169	9.1010755	0.52634440	
LK(56)	34.465968	12.383080	0.71029521	
LK(70)	37.539070	14.766925	0.84513584	
Ereignishorizont	40.529239	17.521030	1.0014574	

Beide Galaxien in Abbildung 4 durchschneiden schließlich den Ereignishorizont. Je mehr sich die Galaxien dem Ereignishorizont nähern, desto später kann der Beobachter mit Lichtgeschwindigkeit emittierte Informationen von diesen Galaxien am Scheitelpunkt jenes Lichtkegels empfangen, den die Weltlinie der jeweiligen Galaxie schneidet. Salopp formuliert empfängt der Beobachter Informationen von einer Galaxie bei $T=\infty$, wenn die Weltlinie der Galaxie den Ereignishorizont schneidet. Im Sinne dieser theoretischen Überlegungen ist eine Galaxie, die der Beobachter einmal wahrgenommen hat, für alle Zeiten zu sehen, wenn sie beim Überschreiten des Ereignishorizonts noch existiert.

Praktisch – aber dieses Thema wird hier nicht behandelt – nimmt die Leuchtkraft der Galaxie mit zunehmender Lichtlaufzeit mehr und mehr ab, so dass die Überlegungen für sehr große *T* theoretischer Natur bleiben.

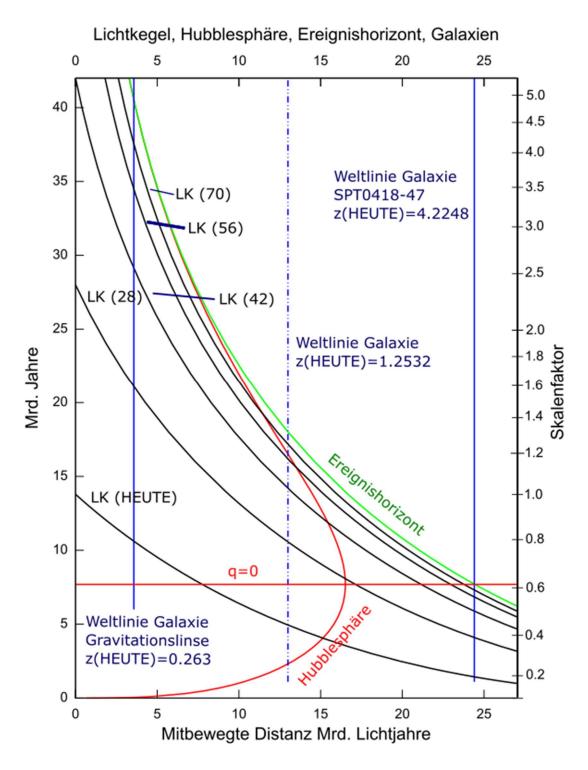


Abbildung 5: Rückwärts-Lichtkegel, Hubblesphäre, Ereignishorizont und Weltlinien von Galaxien in <u>mitbewegten</u> Koordinaten. *LK(T)* bezeichnet den Rückwärts-Lichtkegel mit einem Scheitel bei *T* Milliarden Jahren nach dem Urknall. Die senkrechte linke Koordinatenachse ist zugleich die Weltlinie des Beobachters.

Abbildung 5 zeichnet die gleichen Konstrukte wie Abbildung 4 nun in mitbewegten Koordinaten. In roter Farbe sieht man die Hubblesphäre, die bei q=0 ihr Maximum annimmt und sich im oberen Bereich dem Ereignishorizont annähert. Hubblesphäre und Ereignishorizont konvergieren beide gegen NULL. Es bleibt die Hubblesphäre jedoch – in der Zeichnung nicht mehr erkennbar - stets innerhalb des Ereignishorizonts.

Die Zeichnung enthält 3 durch senkrechte blaue Linien gekennzeichnete Weltlinien von Galaxien, und zwar rechts die Weltlinie von SPT0418-47 und links die der zugehörigen Gravitationslinse. Die mittlere Weltlinie ist die einer potentiellen Galaxie mit einem mitbewegten Abstand von 13 Mrd. Lichtjahren vom Beobachter (z(HEUTE)=1.2532). Diese zusätzliche Weltlinie soll als Beispiel für eine hypothetische Galaxie dienen, die außerhalb der Hubblesphäre entstanden ist, von der Hubblesphäre eingeholt worden ist (stets bei q>0) und die Hubblesphäre wieder verlassen hat (stets bei q<0). Die Hubblesphäre ist also von beiden Seiten her durchlässig und deshalb kein Horizont.

Betrachtet man eine mitbewegte räumliche Position im beobachterzentrierten Universum, so gibt es 3 Möglichkeiten:

- 1) Der mitbewegte Abstand zum Beobachter ist > 16.516757 Mrd. Lichtjahre (mitbewegte Entfernung der Hubblesphäre zum Beobachter bei q=0, siehe Tabelle 3). Dann liegt diese Position (wie der Ort von SPT0418-47) für alle kosmologischen Zeiten außerhalb der Hubblesphäre. (Emittiert eine Galaxie auf den Beobachter gerichtete Photonen von einem solchen Ort, der aber innerhalb des Ereignishorizonts gelegen ist, so werden diese Photonen den Beobachter trotzdem erreichen.)
- 2) Der mitbewegte Abstand zum Beobachter ist < 16.516757 Mrd. Lichtjahre. Dann schneidet dieser Ort die Hubblesphäre zwei Mal, einmal für q>0, einmal für q<0. Das gilt z.B. für die eingezeichnete hypothetische Galaxie mit einem mitbewegten Abstand von 13 Mrd. Lichtjahren vom Beobachter. Auch die Geodäte der Gravitationslinse schneidet die Hubblesphäre zwei Mal. Es ist allerdings nicht auszuschließen, dass die Galaxie am unteren Schnittpunkt noch nicht gebildet war.
- 3) Es gibt noch den Sonderfall einer Galaxie mit einem mitbewegten Abstand von *genau* 16.516757 Mrd. Lichtjahren. Diese berührt die Hubblesphäre bei q=0.

9 Rückwärts-Lichtkegel und Partikelhorizont

9.1 Einige Zusatzbemerkungen zur Definition

Der (allgemeine) Partikelhorizont zu einem beliebigen Zeitpunkt t ist in physikalischen Koordinaten eine Kugeloberfläche um den Beobachter, dessen Radius gleich der physikalischen Distanz (Eigendistanz) zum entferntesten Objekt ist, das der Beobachter SEHEN kann.

In Kap. 7.2.1 hatten wir zunächst den Partikelhorizont zum Zeitpunkt t mit dem Bezugszeitpunkt t_{min} definiert und in einem zweiten Schritt den Bezugszeitpunkt t_{min} gegen NULL streben lassen, um den (allgemeinen) Partikelhorizont zum Bezugszeitpunkt Urknall herzuleiten.

Der Beobachter SIEHT im Falle des Bezugszeitpunkts t_{min} zum Zeitpunkt t ein ruhendes Objekt in seiner Ausprägung zum Zeitpunkt t_{min} (d.h. wie es zum Zeitpunkt t_{min} ausgesehen hat). Dieses Objekt hat sich bis zum Zeitpunkt t allein durch die Expansion des Universums vom Beobachter entfernt. In physikalischen Koordinaten ist der Partikelhorizont zum Zeitpunkt t, bezogen auf den Bezugszeitpunkt t_{min} , die physikalische Entfernung zu diesem Objekt zum Zeitpunkt t, selbstverständlich in seiner gealterten Ausprägung zum Zeitpunkt t.

Denkt man diesen Gedanken weiter fort, so ist der allgemeine Partikelhorizont zum Bezugszeitpunkt Urknall die Entfernung zu einem hypothetischen ruhenden Objekt, das sich seit dem Urknall vom Beobachter entfernt hat, in seiner gealterten Ausprägung zum Zeitpunkt t. Was der Beobachter zum Zeitpunkt t SIEHT, ist die Ausprägung des hypothetischen ruhenden Objekts zum Zeitpunkt Urknall. (Hier ist noch zu bemerken, dass die Rotverschiebung z(t) für jedes t gegen UNENDLICH strebt, wenn sich der Bezugszeitpunkt t_{min} dem Urknall annähert.)

De facto kann der Beobachter aber zumindest Photonen nie früher als in ihrer Ausprägung zum Zeitpunkt $t_{min} = t_{CMB}$ SEHEN.

Der (allgemeine) Partikelhorizont (bezogen auf den Bezugszeitpunkt Urknall) zum Zeitpunkt t begrenzt das (allgemeine) Beobachtbare Universum (bezogen auf den Bezugszeitpunkt Urknall) zum Zeitpunkt t, der Partikelhorizont CMB zum Zeitpunkt t das Beobachtbare Universum CMB zum Zeitpunkt t. Eine exakte Definition von Partikelhorizont und Beobachtbarem Universum ist in Kap. 7.2 aufzufinden. In den weiteren Unterkapiteln dieses Kapitels 9 greifen wir allein auf den (allgemeinen) Partikelhorizont (zum Bezugszeitpunkt Urknall) und das zugeordnete Beobachtbare Universum zurück. In Kap. 10.1 arbeiten wir dann mit dem Partikelhorizont CMB, in Kap. 10.2 allgemeiner mit dem Partikelhorizont t_{min} .

9.2 Lichtkegel, Weltlinien ruhender Objekte und Beobachtbares Universum

In Abbildung 6.1 sollen die erwähnten Eigenschaften exemplarisch erläutert werden. Eingezeichnet ist in physikalischen Koordinaten zunächst der Partikelhorizont sowie das Beobachtbare Universum *HEUTE* und das Beobachtbare Universum *21 Mrd. Jahre* nach dem Urknall.

Eingezeichnet sind weiter die beiden Lichtkegel *LK(HEUTE)* und *LK(21)*. Die größte physikalische Entfernung <u>zum gemeinsamen Zeitpunkt des Beobachter und eines Objekts</u>, das der Beobachter *HEUTE* oder *21 Mrd. Jahre* nach dem Urknall SEHEN kann, ist durch den Schnittpunkt zwischen dem jeweiligen Lichtkegel und der Hubblesphäre bestimmt, also 5.8513981 Mrd. Lichtjahre für *LK(HEUTE)* und 8.4280617 Mrd. Lichtjahre für *LK(21)* (siehe Tabelle 6). Die Zahlen stehen offensichtlich im Kontrast zu den Partikelhorizont-Werten von 46.132820 Mrd. Lichtjahren (HEUTE) und 82.088286 Mrd. Lichtjahren (21 Mrd. Jahre nach dem Urknall).

Tabelle 11: Abstand Beobachter von ruhendem Objekt auf Lichtkegel und Partikelhorizont, Ausprägung Objekt (*T=HEUTE* oder *T=21 Mrd. Jahre* nach dem Urknall)

normonity ruspruguing oxjent (1 112012 out 1 21111 in the term of the control of				
Physikalische Koordinaten	Abstand wird gemessen	Ausprägung: Beobachter		
	zwischen Beobachter und	SIEHT zum Zeitpunkt T		
	Objekt zum Zeitpunkt	Objekt zum Zeitpunkt		
Lichtkegel $d_{LK}(T,t)$	t	t		
Partikelhorizont d _{PH} (T)	T	<i>Urknall</i> (Hinweis: $z(T) = \infty$)		

Als Beispiele für auf Lichtkegeln sichtbare Objekte sollen die bereits in Kap. 8.4 erläuterte Galaxie SPT0418-47 sowie die auf der gleichen radialen Achse gelegene Gravitationslinse dienen. Die Beziehung vom SICHTBAREN Ort auf *LK(HEUTE)* und *LK(21)* zum Ort im Beobachtbaren Universum erfolgt wie in Kap. 8.4 über die Weltlinie ruhender Objekte, deren Abstandsänderungen zum Beobachter ausschließlich expansionsbedingt sind.

Je größer die Lichtlaufzeit von einem auf einem Lichtkegel LK(T) gelegenen ruhenden Objekt zum Scheitel von LK(T) ist, desto mehr verschiebt sich dessen physikalische Entfernung im Beobachtbaren Universum in Richtung auf den Partikelhorizont zum Zeitpunkt T. Diese

Verschiebung ist monoton, d.h. je länger die Lichtlaufzeit ist, desto mehr nähert sich die Position im Beobachtbaren Universum dem Partikelhorizont an.

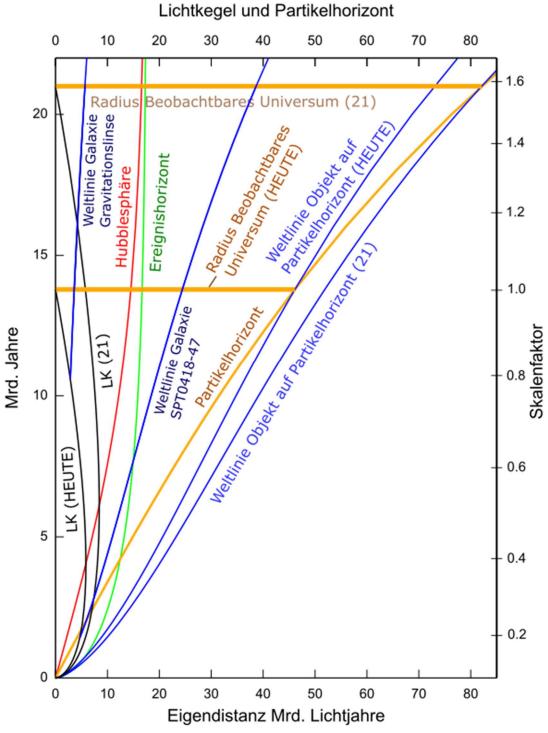
Bisweilen wird in kosmologischen Veröffentlichungen die Frage gestellt, ob es Galaxien oder andere Objekte auch jenseits des Partikelhorizonts bzw. des Beobachtbaren Universums geben kann. Gemeint ist hier in Wirklichkeit die Frage, ob das Universum jenseits dessen fortgesetzt werden kann, was man als durch das ΛCDM-Modell als abgesichert betrachtet. Der Partikelhorizont und das Beobachtbare Universum sind zur Diskussion dieser Frage denkbar ungeeignet. Die Definition des Partikelhorizonts stellt allein die Frage nach dem Ort des für den Beobachter entferntesten sichtbaren Objekts (genaugenommen im Sinne der Lichtlaufzeit) zu einem bestimmten Zeitpunkt. Ob es jenseits des Partikelhorizonts durch das ΛCDM-Modell abgesicherte Objekte geben kann, wird durch die Definition nicht behandelt.

Dies wird spätestens dann klar, wenn man die Frage stellt, wie ein Objekt auf dem Partikelhorizont dorthin gekommen sein kann. Genau wie für andere ruhende Objekte (wie z.B. für als ruhend angenommene Galaxien) kann man auch die Weltlinie von Objekten herleiten, die auf dem Partikelhorizont gelegen sind. Dies ist in Abbildung 6.1 für T=HEUTE und T=21 Mrd. Jahre nach dem Urknall geschehen. Man sieht, dass die entsprechenden Weltlinien vor dem jeweiligen Erreichen des Schnittpunkts mit dem Partikelhorizont weiter vom Beobachter entfernt sind als der Partikelhorizont selbst.

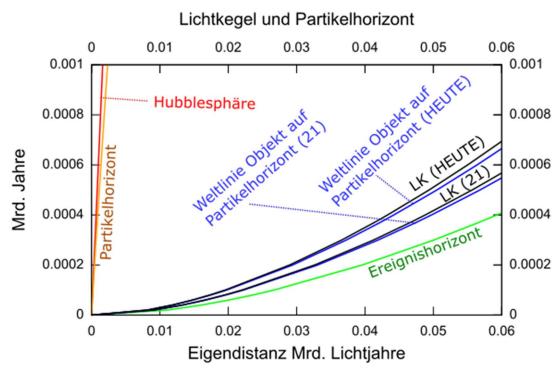
Dieses Thema ist in Davis Lineweaver, 2003 [4], Kap. 4.3, Fig. 3 und Davis, 2003 [5], Kap. 2-1.4, Fig. 2.2 in größerem Detail behandelt. Dort ist auch jeweils eine Zeichnung für mitbewegte Koordinaten vorhanden.

Ein kurzer Blick auf die Abbildungen 6.2 und 6.3 belegt, dass in der Anfangsphase des Universums unsere beiden Lichtkegel und der Ereignishorizont außerhalb des Partikelhorizonts gelegen waren. Auch beim Sichtbarkeitspunkt von SPT0418-47 auf *LK(HEUTE)* bei $t=1.4361299 \, Mrd. \, Jahren$ nach dem Urknall ist der Lichtkegel weiter vom Beobachter entfernt (4.6714397 Mrd. Lichtjahre) als der Partikelhorizont (4.1581461 Mrd. Lichtjahre).

Tabelle 12: Exakte Werte für einige Distanzen in den Abbildungen 6.1, 6.2 und 6.3


Partikelhorizont oder Galaxie	Physikalischer Abstand vom Beobachter
Partikelhorizont 21 Mrd. Jahre nach dem	82.088286 Mrd. Lichtjahre
Urknall	
Partikelhorizont HEUTE	46.132820 Mrd. Lichtjahre
Eigendistanz SPT0418-47 HEUTE	24.407338 Mrd. Lichtjahre (siehe Tabelle 9)
(=mitbewegte Distanz)	
Eigendistanz SPT0418-47 21 Mrd. Jahre	38.614868 Mrd. Lichtjahre
nach dem Urknall	
Eigendistanz Gravitationslinse HEUTE	3.5703150 Mrd. Lichtjahre (siehe Tabelle 10)
(=mitbewegte Distanz)	
Eigendistanz Gravitationslinse 21 Mrd.	5.6485980 Mrd. Lichtjahre
Jahre nach dem Urknall	
Zu den Schnittpunkten der Weltlinien	von SPT0418-47 und Gravitationslinse mit
LK(HEUTE) und LK(21) siehe Tabellen 8 u	nd 9.

Es ist technisch schwierig, kosmologische Eigenschaften in einer Zeichnung für ein Universum unterzubringen, das seit der Emission des CMB um das 1091-fache angewachsen ist. Aus diesem Grunde haben wir für die erste Million und die erste Milliarde Jahre nach dem Urknall zwei zusätzliche Zeichnungen 6.2 und 6.3 erstellt.


In Abbildung 6.2 sehen wir, dass in der ersten Million Jahre nach dem Urknall die Weltlinien von Objekten auf dem Partikelhorizont von HEUTE und dem von 21 Milliarden Jahren nach

dem Urknall weiter vom Beobachter entfernt waren als die zugehörigen Lichtkegel. Der Ereignishorizont war am weitesten entfernt gelegen. Hubblesphäre und Partikelhorizont lagen im Vergleich dazu relativ nah beim Beobachter.

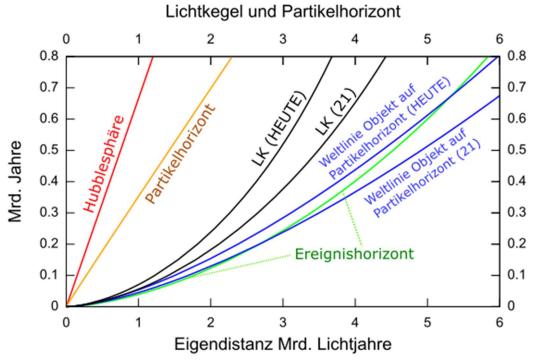

Abbildung 6.3 belegt, dass sich danach in der ersten Milliarde Jahre die Weltlinien der Objekte auf dem Partikelhorizont weiter vom Beobachter entfernen und genau wie Weltlinien von Galaxien den Ereignishorizont schneiden.

Abbildung 6.1: Rückwärts-Lichtkegel, Partikelhorizont und Weltlinien ruhender Objekte in physikalischen Koordinaten

Abbildung 6.2: Rückwärts-Lichtkegel, Partikelhorizont und Weltlinien ruhender Objekte in physikalischen Koordinaten in der ersten Million Jahre nach dem Urknall

Abbildung 6.3: Rückwärts-Lichtkegel, Partikelhorizont und Weltlinien ruhender Objekte in <u>physikalischen Koordinaten</u> in der ersten Milliarde Jahre nach dem Urknall

Tabelle 13: Schnittpunkte des Ereignishorizonts mit Weltlinien und Partikelhorizont

Weltlinie oder Horizont	t Mari Iahaa	Physikalische	Mitbewegte
	Mrd. Jahre	Entfernung	Entfernung
		Mrd. Lichtjahre	Mrd. Lichtjahre
Weltlinie zu Objekt auf	0.67087466	5.3137731	46.132820
Partikelhorizont HEUTE			
Weltlinie zu Objekt auf	0.20219775	2.6930195	51.885625
Partikelhorizont 21 Mrd. Jahre			
Partikelhorizont	4.2158248	12.472340	31.406086

Übrigens wurde in der Literatur vor einigen Jahrzehnten die Weltlinie von Objekten auf dem Partikelhorizont *HEUTE* als "Partikelhorizont" tituliert. (vgl. Davis/Lineweaver 2003 [4], Kap. 4.3 und Davis 2003 [5], Kap. 2-1.4).

9.3 Beobachtbares Universum und Lichtlaufzeit

In Kap. 9.2 hatten wir auf die Beziehung zwischen dem Beobachtbaren Universum und der Lichtlaufzeit (Lookback-Time) von Photonen hingewiesen, die von Galaxien auf einem Lichtkegel emittiert werden. Dort hatten wir in den Abbildungen 6.1, 6.2 und 6.3 die Weltlinien von SPT0418-47, der zugehörigen Gravitationslinse sowie die Weltlinien von Objekten auf dem Partikelhorizont (jeweils in blauer Farbe) eingezeichnet.

Anhand von zwei Tabellen wollen wir diesen Zusammenhang anhand der Lichtkegel *LK(21)* und *LK(HEUTE)* noch einmal quantitativ untersuchen. Anstelle der zuvor erwähnten Weltlinien sollen nun Weltlinien ruhender Objekte systematisch erzeugt werden.

Beide Tabellen zeigen in der ersten Spalte den Zeitpunkt, zu dem von einem ruhenden Objekt auf dem jeweiligen Lichtkegel Photonen in Richtung auf den Beobachter emittiert werden. Die zweite Spalte enthält die Lichtlaufzeit, nach der die emittierten Photonen beim Scheitel des Lichtkegels ankommen. Die 4. Spalte umschreibt die <u>physikalische</u> Entfernung des Objektes, das die am Scheitel ankommenden Photonen einst emittiert hatte, vom Scheitel des Lichtkegel zum Ankunftszeitpunkt, also *21 Mrd. Jahre* nach dem Urknall bei *LK(21)* und *13.790687 Mrd. Jahre* nach dem Urknall (siehe Tabelle 2) bei *LK(HEUTE)*.

Bei *LK(21)* sieht man, dass die *bis zu 3 von 21 Mrd. Jahren* (also bis zu 1/7 der bis zum Erreichen des Scheitels vergangenen Zeit, entspricht der 1-1/7=85.71%-Linie der Lichtlaufzeit) emittierenden Objekte *21 Mrd. Jahre* nach dem Urknall *53.92%* (46.08%-Linie im Beobachtbaren Universum) des Beobachtbaren Universums für sich beanspruchen, und zwar den vom Beobachter entfernteren Teil. Im Beobachtbaren Universum nehmen also Objekte, die Photonen mit einer langen Lichtlaufzeit emittiert haben, einen übermäßig großen Teil des Beobachtbaren Universums ein.

Außerdem ist die Abbildung von der Emissionszeit auf die Entfernung vom Beobachter am Scheitelpunkt monoton. Je früher die Objekte Photonen in Richtung des Beobachters emittiert haben, desto weiter sind sie am Scheitel vom Beobachter entfernt.

Tabelle 14: Lichtkegel LK(21) - Beobachtbares Universum und Lichtlaufzeit

Tabelle 14. Lic			Universum und Lich	liauizeit
t	Lookback	%	Beob. Univ.	
Mrd. Jahre	Mrd. Jahre	Lookback	Mrd. Lichtjahre	% Beob. Univ.
0.00000000	21.0000000	100.00%	82.0882860	100.00%
0.00037113	20.9996290	100.00%	80.6429660	98.24%
0.00100000	20.9990000	100.00%	79.8643370	97.29%
0.01000000	20.9900000	99.95%	76.4159430	93.09%
0.10000000	20.9000000	99.52%	68.6644220	83.65%
0.50000000	20.5000000	97.62%	58.2798910	71.00%
1.00000000	20.0000000	95.24%	51.7653210	63.06%
2.00000000	19.0000000	90.48%	43.5617940	53.07%
3.00000000	18.0000000	85.71%	37.8233670	46.08%
4.00000000	17.0000000	80.95%	33.2762320	40.54%
5.00000000	16.0000000	76.19%	29.4605990	35.89%
6.00000000	15.0000000	71.43%	26.1517200	31.86%
8.00000000	13.0000000	61.90%	20.5869150	25.08%
10.00000000	11.0000000	52.38%	16.0044000	19.50%
12.00000000	9.0000000	42.86%	12.1209480	14.77%
13.79068700	7.2093132	34.33%	9.1015168	11.09%
16.00000000	5.0000000	23.81%	5.8541802	7.13%
18.00000000	3.0000000	14.29%	3.2917002	4.01%
20.00000000	1.0000000	4.76%	1.0308526	1.26%
21.00000000	0.0000000	0.00%	0.0000000	0.00%

Bei *LK(HEUTE)* zeigt sich ein analoges Bild. Die bis nach 2 von 13.790687 Mrd. Jahren (14.5% der Zeit von *HEUTE*, wieder ungefähr 1/7), also bei Erreichen 85.50 %-Linie der Lichtlaufzeit, nehmen die emittierenden Objekte 52.79% (47.21%-Linie) des Beobachtbaren Universums ein.

Tabelle 15: Lichtkegel *LK(HEUTE)* - Beobachtbares Universum und Lichtlaufzeit

t	Lookback	%	Beob. Univ.	
Mrd. Jahre	Mrd. Jahre	Lookback	Mrd. Lichtjahre	% Beob. Univ.
0.00000000	13.79068700	100.00%	46.13282000	100.00%
0.00037113	13.79031600	100.00%	45.21927500	98.02%
0.00100000	13.78968700	99.99%	44.72712600	96.95%
0.01000000	13.78068700	99.93%	42.54749700	92.23%
0.10000000	13.69068700	99.27%	37.64798500	81.61%
0.50000000	13.29068700	96.37%	31.08422400	67.38%
1.00000000	12.79068700	92.75%	26.96655300	58.45%
2.00000000	11.79068700	85.50%	21.78134200	47.21%
4.00000000	9.79068680	70.99%	15.28013600	33.12%
6.00000000	7.79068680	56.49%	10.77693900	23.36%
8.00000000	5.79068680	41.99%	7.25958740	15.74%
10.00000000	3.79068680	27.49%	4.36311250	9.46%
12.00000000	1.79068680	12.98%	1.90849520	4.14%
13.79068700	0.00000000	0.00%	0.00000000	0.00%

10 Vorwärts-Lichtkegel

<u>Vorbemerkung:</u> Bei einem Vergleich von Vorwärts-Lichtkegel und Partikelhorizont muss je nach Vergleichsthema von der üblichen Nomenklatur abgewichen werden. Kap. 6.3 kann zum Verständnis Hilfestellung leisten.

Sobald die auf den Beobachter gerichteten Photonen den Scheitelpunkt eines Lichtkegels passiert haben, wechseln sie im Koordinatensystem von der positiven radialen Achse zur negativen. Es brauchen weiterhin keine Raumwinkel betrachtet zu werden, nur nehmen die Koordinatenwerte nun negative Werte an. Die Differenz zwischen zwei Werten auf der gesamthaften Achse ist der Absolutbetrag der Differenz. Meistens werden im Weiteren jedoch nur Aspekte diskutiert, die ganz auf der positiven oder ganz auf der negativen Achse angesiedelt sind.

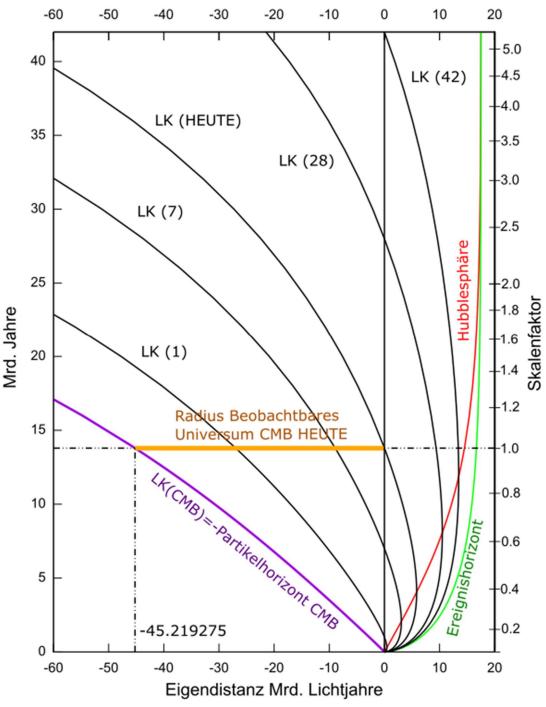
10.1 Vorwärts-Lichtkegel und Beobachtbares Universum CMB

Es ist klar, dass unter der Annahme, dass die Photonen auf der positiven Achse emittiert wurden, der Vorwärts-Lichtkegel in physikalischen Koordinaten mit $t \to \infty$ nun gegen $-\infty$ (*minus UNENDLICH*) (Eigendistanz auf der negativen Achse) strebt. Man könnte diesen Umstand nun in der zweiseitigen Abbildung 1 zusätzlich einzeichnen, allerdings ist so kein großer Erkenntnisgewinn zu erwarten. Wir schlagen vor, sich hier die animierte Zeichnung [3] von Yukterez in physikalischen Koordinaten anzuschauen.

Abbildung 7 zeigt im oberen Bereich (links neben der Weltlinie des Beobachters) die gegen -∞ verlaufenden Vorwärts-Lichtkegel.

Einen wichtigen Einblick in das *HEUTIGE* Beobachtbare Universum gewinnt man, wenn man Lichtkegel betrachtet, die die Weltlinie des Beobachters zu früheren Zeiten (vor *HEUTE*) geschnitten haben, wobei angenommen wird, dass die den Lichtkegel formenden Photonen bereits vor Erreichen der Schnittpunkte auf den Beobachter gerichtet waren. Die Gesamtheit der Schnittpunkte der Vorwärts-Lichtkegel mit der *t=HEUTE-Zeitlinie* formt den negativen Anteil des *HEUTIGEN* Beobachtbaren Universums.

Eingezeichnet in Zeichnung 7 ist das Beobachtbare Universum CMB zum Zeitpunkt *HEUTE* mit seinen 3 Schnittpunkten zu *LK*(7), *LK*(1) und der Begrenzungslinie *LK*(*CMB*), die genau die negativen Werte des Partikelhorizonts CMB enthält.


Tabelle 16: Schnittpunkte Vorwärts-Lichtkegel mit Beobachtbarem Universum CMB

Scheitelpunkt "Rückwärts"-Lichtkegel	Schnittpunkt Lichtkegel mit
als Zeit nach dem Urknall – es wird aber	Beobachtbarem Universum CMB
nur der Vorwärts-Lichtkegel betrachtet	Zeitpunkt HEUTE (Koordinatenwert)
371′127 Jahre	-45.219275 Mrd. Lichtjahre
1 Mrd. Jahre	-26.966553 Mrd. Lichtjahre
7 Mrd. Jahre	-8.9244791 Mrd. Lichtjahre

Zum CMB-Emissionszeitpunkt im Scheitelpunkt von 371'127 Jahren nach dem Urknall (siehe Tabelle 3) des Lichtkegels (Übergang von Rückwärts- zum Vorwärts-Lichtkegel) befand sich der Beobachter (physikalische Entfernung 0) im Zentrum des Beobachtbaren Universums (positiver und negativer Anteil zusammen), während jener Ort, von dem wir HEUTE den Mikrowellenhintergrund empfangen, zum Emissionszeitpunkt 41.447549 Millionen Lichtjahre vom Beobachter entfernt auf der positiven Achse gelegen war.

Selbstverständlich empfangen wir *HEUTE* den Mikrowellenhintergrund aus allen Richtungen. Zum Emissionszeitpunkt der *HEUTE* empfangenen Hintergrundstrahlung war der Mikrowellenhintergrund in physikalischen Koordinaten eine Kugeloberfläche um den Beobachter mit einem Radius von 41.447549 Millionen Lichtjahren. HEUTE beträgt der Radius dieser Kugeloberfläche mit dem Beobachter im Zentrum 45.219275 Mrd. Lichtjahre (Partikelhorizont CMB). (Wie die positive radiale Richtung zu interpretieren ist, ist in Kap. 6.1 dargelegt.)

Vorwärts-Lichtkegel, Partikelhorizont CMB und Radius Beobachtbares Universum CMB HEUTE

Abbildung 7: Vorwärts-Lichtkegel, Partikelhorizont CMB und Beobachtbares Universum CMB in <u>physikalischen</u> Koordinaten. Die durchgezogene senkrechte Achse rechts der Mitte (Eigendistanz *0 Mrd. Lichtjahre*) ist zugleich die Weltlinie des Beobachters.

Bezeichne t_0 den Zeitpunkt *HEUTE* und t_7 den Zeitpunkt *7 Mrd. Jahre* nach dem Urknall. In der Folge werden nur physikalische Koordinaten behandelt. Zugrunde liegen die Formeln von Tabelle 4 sowie (7) bis $8(_{CMB})$. Weiter mögen die folgenden Formeln vereinbart sein:

Tabelle 17: Partikelhorizont positiv und Lichtkegel negativ

Positive Achse	Negative Achse
$\{1\}\ d_{PHCMB}(t_0)=d(a(t_{CMB}),a(t_0),a(t_0))$	$\{2\}$ -d _{LK} (t _{CMB} ,t ₀)=-d(a(t ₀),a(t _{CMB}),a(t ₀))
Partikelhorizont Zeitpunkt t ₀ zum	Lichtkegel Scheitel t _{CMB} zum
Bezugszeitpunkt t _{CMB}	Zeitpunkt t ₀
$\{3\}\ d(a(t_7),a(t_0),a(t_0))$	$\{4\}$ -d _{LK} (t7,t ₀)=-d(a(t ₀),a(t ₇),a(t ₀))
Partikelhorizont Zeitpunkt t ₀ zum	Lichtkegel Scheitel t ₇ zum
Bezugszeitpunkt t ₇	Zeitpunkt t ₀
$\{5\}\ d(a(t^*),a(T),a(T))$	$\{6\}$ -d _{LK} (t*,T)=-d(a(T),a(t*),a(T))
Partikelhorizont Zeitpunkt T zum	Lichtkegel Scheitel t* zum
Bezugszeitpunkt t*	Zeitpunkt T

Wegen Formel (7_{CMB}) ist die Entfernung $\{1\}$ des Beobachters *HEUTE* zum Partikelhorizont CMB gleich der Entfernung $\{2\}$ in negativen Koordinaten des Vorwärts-Lichtkegels mit Scheitelpunkt $t_{\text{CMB}} = 371'127$ Jahre nach dem Urknall zum Zeitpunkt *HEUTE*.

Die letzte Aussage kann für die physikalische Entfernung des Beobachters zur HEUTIGEN Position eines Objekts verallgemeinert werden. Die Entfernung $\{3\}$ des Beobachters HEUTE zum Partikelhorizont mit dem Bezugszeitpunkt 7 Mrd. Jahre nach dem Urknall ist gleich der Entfernung $\{4\}$ in negativen Koordinaten des Vorwärts-Lichtkegels mit dem Scheitelpunkt $t_7 = 7$ Mrd. Jahre nach dem Urknall zum Zeitpunkt HEUTE.

Selbstverständlich kann auch anstelle HEUTE ein beliebiger Zeitpunkt T und anstelle t_{CMB} bzw. t_7 ein Zeitpunkt $t^* < T$ eingesetzt werden, wodurch die Formeln $\{5\}$ und $\{6\}$ zustande kommen.

Formeln $\{1\}$ und $\{3\}$ stehen für Schnittpunkte mit dem Beobachtbaren Universum HEUTE auf der positiven, Formeln $\{2\}$ und $\{4\}$ für Schnittpunkte mit dem Beobachtbaren Universum HEUTE auf der negativen Achse. Formeln $\{5\}$ und $\{6\}$ zeigen Schnittpunkte mit dem Beobachtbaren Universum zum Zeitpunkt T an.

10.2 Alternative Definitionen von Partikelhorizont und Beobachtbarem Universum

Man kann, wie in Kap. 7.2.4 erwähnt, Vorwärts-Lichtkegel-basierte Definitionen für den Partikelhorizont (im Gegensatz zur Rückwärts-Lichtkegel-Definition von Kap. 7.2.1) formulieren, indem man die Reihenfolge (und eventuell sämtliche Vorzeichen) in den Formeln (7), (8), (7_{CMB}) und (8_{CMB}) einfach umkehrt. Wir formulieren die neue Definition für den Partikelhorizont wieder für einen Zeitpunkt t_{min} , wobei $t_{min} = t_{CMB}$ selbstverständlich eine zulässige Variante darstellt.

<u>Definition 2 Partikelhorizont t_{min} :</u> Sei $t_{min} < t$. Passiert ein aus dem positiven Bereich des Lichtkegels mit Scheitelpunkt t_{min} kommendes Photon auf einer radialen Koordinatenachse zum Zeitpunkt t_{min} auf dieser Koordinatenachse den im Ursprung angenommenen Beobachter, oder wird ein Photon zum Zeitpunkt t_{min} am Ort des Beobachters erzeugt und in Richtung der negativen radialen Halbachse emittiert, so ist der negative (physikalische) Partikelhorizont zum Zeitpunkt t, bezogen auf den

Bezugszeitpunkt t_{min}, der (physikalische) Abstand dieses Photons vom Beobachter auf der negativen Koordinatenachse zum Zeitpunkt t.

Definition 2 ist nicht einfach eine Umformulierung von Definition 1 aus Kap. 7.2.1. Es werden vielmehr vollständig andere kosmologische Eigenschaften dargestellt, die allerdings (bis auf das Vorzeichen) zum gleichen Ergebnis führen.

Ein Vergleich der Definition 1 in Kap. 7.2.1 mit der soeben formulierten Definition 2 führt zu folgendem Ergebnis, wobei alle Abstände als physikalisch angenommen werden sollen: Der Absolutbetrag des negativen Partikelhorizonts von Definition 2 entspricht genau dem Abstand zum Zeitpunkt t eines ruhenden Objekts vom Beobachter, das zum Zeitpunkt t_{min} auf dem positiven Teil der Koordinatenachse ein Photon in Richtung auf dem Beobachter emittiert hat, das den Beobachter zum Zeitpunkt t erreicht. Der Abstand zum Zeitpunkt t_{min} des ruhenden Objekts aus Definition 1 vom Beobachter beträgt $d_{LK}(t,t_{min})$, der Abstand des Photons vom Beobachter aus Definition 2 beträgt NULL.

In Definition 1 ist der Partikelhorizont der Abstand vom Beobachter zum Zeitpunkt t des ruhenden Objekts, das ein Photon zum Zeitpunkt t_{min} in Richtung des Beobachters emittiert hat. (Das Photon selbst passiert zum Zeitpunkt t den Beobachter.) In Definition 2 ist der (negative) Partikelhorizont der Abstand des Photons selbst vom Beobachter.

Der (negative) Partikelhorizont begrenzt den negativen Radius des Beobachtbaren Universums, bezogen auf den Bezugszeitpunkt t_{min} . Es ist offensichtlich, dass ein Photon, das den Beobachter zu einem Zeitpunkt t^* mit $t_{min} \le t^* < t$ passiert, zum Zeitpunkt t den negativen Radius des Beobachtbaren Universums zwischen den Abständen $-d_{LK}(t_{min},t)$ und NULL vom Beobachter schneidet. Der negative Partikelhorizont begrenzt den Radius jenes Teils des Universums, das seit dem Zeitpunkt t_{min} in kausalen Kontakt mit dem Beobachter gekommen ist, wobei dieser Kontakt genau zum Zeitpunkt t_{min} stattgefunden hat.

Man gewinnt wieder das (allgemeine) Beobachtbare Universum (zum Bezugszeitpunkt Urknall), indem man t_{min} gegen NULL streben lässt. Der negative Radius des (allgemeinen) Beobachtbaren Universums ist durch den negativen (allgemeinen) Partikelhorizont mit dem Bezugszeitpunkt Urknall begrenzt.

Man könnte auch das (allgemeine) Beobachtbare Universum (mit Bezugszeitpunkt Urknall) zum Zeitpunkt t als Kugel definieren, deren negativer Radius die größte untere Schranke (das Infimum, da Radien negativ) von negativen Partikelhorizonten zu Bezugszeitpunkten t_{min} gemäß <u>Definition 2 Partikelhorizont t_{min} </u> (hier würde t_{min} als Variable betrachtet) mit $0 < t_{min} < t$ ist.

Da positive und negative Koordinatenachse willkürlich gewählte Richtungen darstellen, besteht das Beobachtbare Universum generell aus beiden Bestandteilen. Es treffen sich gemäß Tabelle 17 $\{5\}$ und $\{6\}$ bei einem Abstand $d(a(t^*),a(t),a(t))$ vom Beobachter mit $t^* < t$ also ruhende Objekte, die zum Zeitpunkt t^* auf den Beobachter gerichtete Photonen emittiert haben, die der Beobachter zum Zeitpunkt t empfängt, MIT Photonen, die den Beobachter zum Zeitpunkt t^* auf der radialen Koordinatenachse passiert haben, wobei aber ruhende Objekte und Photonen bezogen auf die Koordinatenachse jeweils gegenüberliegenden Radien zugeordnet sind.

Die Gesamtheit aller Durchmesser (beide Radien, einschließlich beide Varianten des Partikelhorizonts) bildet wieder die Kugel des Beobachtbaren Universums zum Zeitpunkt t, bezogen auf den Zeitpunkt t_{min} , wobei im Grenzfall t_{min} gegen NULL (Urknall) streben kann.

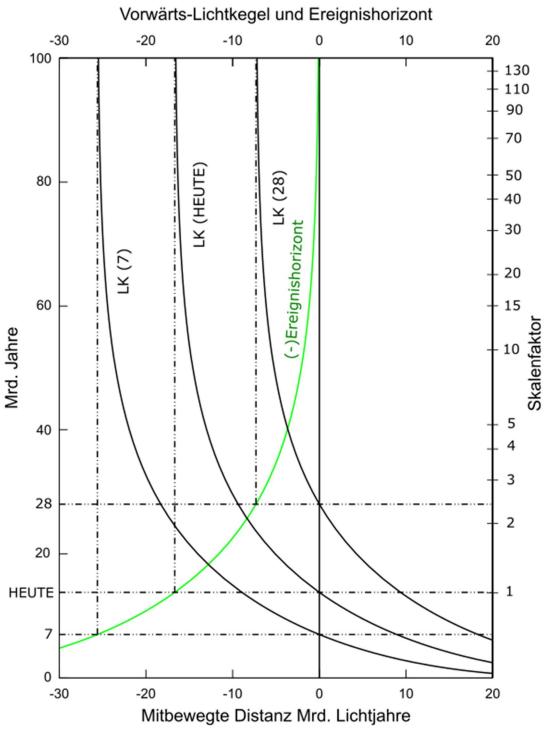
10.3 Interpretation des Partikelhorizonts als Lichtkegel

In Kap. 10.1 hatten wir einen Lichtkegel mit Scheitelpunkt CMB auf der positiven radialen Koordinatenachse definiert und darauf hingewiesen, dass der Vorwärts-Lichtkegel LK(CMB) auf der negativen radialen Achse dem negativen Partikelhorizont CMB entspricht. Abbildung 7 hatte diese Deutung unterstützt, und in Tabelle 17 hatten wir diese Eigenschaft auf von $t = t_{CMB}$ verschiedene Scheitelpunkte erweitert. Auch war an verschiedenen Stellen daraufhin gewiesen worden, dass die Wahl der positiven (ruhende Objekte) und negativen Halbachse (Photonen) zur Definition des Partikelhorizonts willkürlich ist.

Aufgrund der Willkürlichkeit der getroffenen Wahl ist es selbstverständlich auch möglich, den Partikelhorizont so zu definieren, dass sich ruhende Objekte und Photonen unmittelbar auf der positiven Halbachse treffen. Es ist dazu lediglich notwendig, den Lichtkegel mit Scheitelpunkt t_{CMB} auf der negativen Koordinatenachse zu definieren. Ausgangspunkt zur Definition des Partikelhorizonts ist also -LK(CMD). Das aufgrund dieser Wahl hergeleitete Konzept kann dann, in sich abgeschlossen, folgendermaßen entwickelt werden - siehe hierzu Lange 2023 [10].

Es ist möglich, den Partikelhorizont als Vorwärts-Teillichtkegel eines Lichtkegels zu interpretieren. Der Scheitel des zugehörigen, auf der negativen radialen Koordinatenachse gelegenen Rückwärts-Teillichtkegels übernimmt dabei die Rolle eines Bezugszeitpunkts (z.B. des Zeitpunkts der Emission der kosmischen Mikrowellen-Hintergrundstrahlung CMB) des so definierten Partikelhorizonts. Im Allgemeinen, aber nicht notwendigerweise, wird dieser Bezugszeitpunkt in der Frühzeit des Universums gewählt. Außerdem lässt sich zeigen, dass sich im Partikelhorizont zu einem bestimmten Zeitpunkt truhende Objekte und bewegliche Photonen treffen, die beide mit dem Bezugszeitpunkt verbunden sind. Die ruhenden Objekte waren zum Bezugszeitpunkt auf dem Lichtkegel LK(t) gelegen. Die Photonen (oder die mit Lichtgeschwindigkeit übermittelten Informationen) waren vor dem Bezugszeitpunkt auf den Beobachter gerichtet und hatten diesen zum Bezugszeitpunkt passiert, oder sie wurden zum Bezugszeitpunkt am Ort des Beobachters erzeugt und in Richtung der positiven radialen Koordinatenhalbachse emittiert.

10.4 Vorwärts-Lichtkegel und Ereignishorizont


Während, wie auch in Abbildung 7 erkennbar, die Vorwärts-Lichtkegel LK(T) für jedes T in physikalischen Koordinaten für $t \rightarrow \infty$ auf der radialen Koordinatenachse gegen $-\infty$ verlaufen, konvergieren die Vorwärts-Lichtkegel LK(T) in mitbewegten Koordinaten für $t \rightarrow \infty$ auf der negativen Koordinatenachse gegen den negativen Wert des Ereignishorizonts (in mitbewegten Koordinaten) zum Zeitpunkt T.

Formell heißt dies: aus $t \rightarrow \infty$ folgt: für jedes T gilt $d_{LK}(T,t) \rightarrow -\infty$; aus $t \rightarrow \infty$ folgt: für jedes T gilt $D_{LK}(T,t) \rightarrow -D_{EH}(T)$.

Tabelle 18: Ereignishorizont in mitbewegten Koordinaten als Grenzlinie von Vorwärts-Lichtkegeln

Scheitelpunkt "Rückwärts"-Lichtkegel	Ereignishorizont in mitbewegten
als Zeit nach dem Urknall	Koordinaten (Koordinatenwert)
7 Mrd. Jahre	-25.603830 Mrd. Lichtjahre
HEUTE	-16.679351 Mrd. Lichtjahre
28 Mrd. Jahre	-7.3055020 Mrd. Lichtjahre

Bei den Schnittpunkten von LK(7), LK(HEUTE) und LK(28) mit der Weltlinie des Beobachters findet man achsenparallele waagerechte Hilfslinien. Eingezeichnet ist in grüner Farbe der Ereignishorizont in negativen Koordinaten. Für T=7 Mrd. Jahre nach dem Urknall, T=HEUTE und T=28 Mrd. Jahre nach dem Urknall ist der negative Wert des Ereignishorizonts als Schnittpunkt zwischen der grünen Linie und den waagerechten achsenparallelen Hilfslinien erkennbar. Die Lichtkegel konvergieren für $t \rightarrow \infty$ gegen die senkrechten achsenparallelen Hilfslinien oberhalb der Schnittpunkte.

Abbildung 8: Vorwärts-Lichtkegel und Ereignishorizont in <u>mitbewegten</u> Koordinaten. Die durchgezogene senkrechte Achse rechts der Mitte (Mitbewegte Distanz 0 Mrd. Lichtjahre) ist zugleich die Weltlinie des Beobachters.

11 Verwendete Begriffe, Symbole und Abkürzungen

Begriffe

Begriffe	
Beobachter	Wird ausschließlich für einen im Hubble-Flow treibenden Beobachter in der Milchstraße (z.B. auf der Erde) verwendet. Alle Abstände zu Lichtkegeln, Hubblesphäre, Horizonten und Weltlinien ruhender Objekte beziehen sich auf diesen Beobachter. Der Beobachter wird im Zentrum des Beobachtbaren Universums angenommen und wird in den Ursprung eines Koordinatensystems platziert.
ruhendes oder	Ein im Hubble-Flow treibendes Objekt. Die physikalische Entfernung
(synonym)	des Beobachters zu einem solchen Objekt ändert sich ausschließlich
mitbewegtes	durch die Expansion des Universums. Die mitbewegte Entfernung ändert
Objekt	sich nie.
Galaxie	Wird als ruhendes Objekt modelliert, das Photonen (Licht) in Richtung des Beobachters emittiert. Die realen gravitativ bedingten Pekuliarbewegungen von Galaxien werden in diesem Artikel nicht erfasst. Je weiter ein Objekt vom Beobachter entfernt ist, umso geringer ist im Durchschnitt der durch Pekuliarbewegungen bedingte Fehler. Für die Mehrheit der in diesem Artikel behandelten Themen können "Galaxie", "ruhendes Objekt" und "mitbewegtes Objekt" als gleichbedeutend betrachtet werden.
Radiale Koordi-	Definition siehe Kap. 6.1
natenachse	2
Physikalische	siehe Kap. 3
Entfernung oder	Formel: siehe Kap 6.2
(synonym)	Definiert für Inertialsysteme mit gleicher kosmologischer Zeit
Eigendistanz	(Beobachter, Galaxie)
Mitbewegte	siehe Kap. 3
Entfernung	Formel: siehe Kap. 6.2
Hubblesphäre	siehe Kap. 7.1
Partikelhorizont	siehe Kap. 7.2, Kap. 10.2
Partikelhorizont	siehe Kap. 7.2, Kap. 10.1, Kap. 10.2
CMB	
Beobachtbares	siehe Kap7.2, Kap. 10.2
Universum	
Beobachtbares	siehe Kap. 7.2, Kap. 10.2
Universum	
CMB	
Kosmologischer	siehe Kap. 7.3
Ereignishorizont	
Lichtkegel	siehe Kap. 7.4.
	Wenn nicht ausdrücklich anderes erwähnt ist, ist der Mantel des
	Lichtkegels gemeint.
Scheitel	Mit dem Scheitel eines Lichtkegels ist der Scheitelpunkt des Rückwärts-
	Lichtkegels (Vergangenheits-Lichtkegels) gemeint.
SEHEN,	SEHEN heißt, dass mit Lichtgeschwindigkeit übermittelte Informationen
SICHTBAR	den Beobachter am Scheitel eines Lichtkegels passieren. Zugeordnete
	Adjektive sind analog zu interpretieren.
Licht, Photonen,	Im Sinne der hier behandelten theoretischen Abstandsüberlegungen sind
mit Licht-	die Begriffe fast synonym zu verwenden. Mit Lichtgeschwindigkeit
geschwindigkeit	übermittelte Informationen können insbesondere auch vor dem CMB
übermittelte	emittiert worden sein.
Informationen	

Bezugszeitpunkt	Der Partikelhorizont zum Zeitpunkt t, bezogen auf den Bezugszeitpunkt
oder (synonym)	t_{min} (Spezialfall: t_{CMB}) im frühen Universum, begrenzt den Raum des
frühester Emis-	Beobachtbaren Universums zum Zeitpunkt t , das seit dem Zeitpunkt t_{min}
sionszeitpunkt	in kausalen Kontakt mit dem Beobachter gekommen ist. Auch das
	Beobachtbare Universum kann auf diese Weise begrenzt werden.
Weltlinie	In diesem Artikel wird unter Weltlinie konsequent der Pfad eines
	ruhenden Objekts aufgrund der Expansion des Universums verstanden.
	Für Weltlinien von Photonen wird konsequent der Begriff Geodäte oder
	LICHTKEGEL verwendet. Ausnahme: die importierte Abbildung 3.
FLRW-Metrik	siehe Kap. 3
HEUTE	13.790687 Mrd. Jahre nach dem Urknall. Siehe Tabelle 2.

Symbole und Abkürzungen

а	Skalenfaktor, <i>a(HEUTE)=1</i>
t, T	t wird als allgemeines Symbol für die Zeit seit dem Urknall verwendet.
	Da Horizonten und Hubblesphäre für jedes t genau ein (physikalischer
	oder mitbewegter) Abstand vom Beobachter zugeordnet ist, ist dieser
	Wert allein im Normalfall ausreichend. Für den Lichtkegel sind einmal
	für den Scheitel die Zeit T und für einen Wert auf dem Lichtkegel ein
	zusätzlicher Zeitpunkt <i>t</i> erforderlich. Werden Horizonte oder Hubble-
	sphäre zur Scheitel-Zeit eines Lichtkegels betrachtet, so wird auch hier T
	zur Kennzeichnung der Scheitel-Zeit gebraucht.
LK(T)	Lichtkegel mit Scheitelpunkt T Mrd. Jahre nach dem Urknall
t_{min}, t_{CMB}	t _{min} : Bezugszeitpunkt im frühen Universum, verwendet für Partikel-
	horizont und Beobachtbares Universum; t_{CMB} : Zeitpunkt der Emission
	der kosmologischen Hintergrundstrahlung (siehe Tabelle 3)
\boldsymbol{z}	Rotverschiebung, abhängig vom Scheitel eines Lichtkegels.
	Wenn der Scheitel nicht völlig klar ist, wird die Scheitelzeit in Klammern
	dahinter gesetzt, z.B. in der Form z.B. $z(HEUTE)=1090$.
H_0 , Ω_M , Ω_R , Ω_Λ	siehe Tabelle 1
q	Abbremsparameter, siehe Tabelle 3, siehe Kap. 8.2, siehe (9)
t(a)	t als Funktion von a, siehe (1)
a(t)	a als Funktion von t, Umkehrfunktion von t(a), schwieriger berechenbar
H(a)	Hubble-Parameter (2)
E(a)	Dichte-Funktion (3)
ΛCDM	Lambda Cold Dark Matter
ΛCDM-Modell	Räumlich flaches Standardmodell der Kosmologie
km / Mpc / s	Kilometer pro Megaparsec pro Sekunde: km * Mpc ⁻¹ * s ⁻¹
Mrd.	Milliarden
С	Lichtgeschwindigkeit
Trennzeichen	Dezimaltrennzeichen: Punkt
	Tausendertrennzeichen: Apostroph

12 Literatur

- [1] N. Aghanim et al.: Planck 2018 results. VI. Cosmological parameters, arXiv 1807.06209v4, August 2021, https://arxiv.org/pdf/1807.06209.pdf
- [2] W. Lange, Kosmologie-Rechner WELTTABELLEN 3.0 Weltlinien des Standardmodells der Kosmologie (ACDM-Modell) in Tabellenform, viXra 2209.0113, 2022-2025, https://www.welttabellen.com/downloads
- [3] Yukterez (Simon Tyran, Wien): Animierte Zeichnungen http://lcdm.yukterez.net/i.html#plot
- [4] T.M. Davis / C.H. Lineweaver: Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the Universe, November 2003, https://arxiv.org/abs/astro-ph/0310808
- [5] Tamara M. Davis: Fundamental Aspects of the Expansion of the Universe and Cosmic Horizons, Sydney December 2003, https://arxiv.org/abs/astro-ph/0402278
- [6] Wikipedia SPT0418-47 https://de.wikipedia.org/wiki/SPT0418-47, abgerufen 16.11.2022
- [7] Für SPT0418-47 relevante Weltlinien (Wikipedia)
 https://commons.wikimedia.org/wiki/File:Worldlines_relevant_for_SPT0418-47.svg, abgerufen 16.11.2022
- [8] Matts Roos: Introduction to Cosmology, Third Edition, Wiley Chichester 2003
- [9] E. Harrison: Hubble spheres and particle horizons, The Astrophysical Journal, 383:60-65,1991 December 10 https://articles.adsabs.harvard.edu/pdf/1991ApJ...383...60H
- [10] W. Lange: Der Partikelhorizont als Lichtkegel im Standardmodell der Kosmologie (ΛCDM-Modell), viXra 2305.0146, 2023, https://vixra.org/abs/2305.0146, abgerufen am 26.05.2023
- © Werner Lange, Altos / PARAGUAY, langealtos, 2022-2025